scholarly journals Surface soil temperature seasonal variation estimation in a forested area using combined satellite observations and in-situ measurements

Author(s):  
Chenyang Xu ◽  
John J. Qu ◽  
Xianjun Hao ◽  
Zhiliang Zhu ◽  
Laurel Gutenberg
Author(s):  
Hongliang Ma ◽  
Jiangyuan Zeng ◽  
Jean-Pierre Wigneron ◽  
Xiang Zhang ◽  
Nengcheng Chen ◽  
...  

2013 ◽  
Vol 27 (4) ◽  
pp. 359-367 ◽  
Author(s):  
T. Adak ◽  
N.V.K. Chakravarty

Abstract Temporal changes in surface soil temperature were studied in winter crop. Significant changes in bare and cropped soil temperature were revealed. Air temperature showed a statistically positive and strong relationship (R2 = 0.79** to 0.92**) with the soil temperature both at morning and afternoon hours. Linear regression analysis indicated that each unit increase in ambient temperature would lead to increase in minimum and maximum soil temperatures by 1.04 and 1.02 degree, respectively. Statistically positive correlation was revealed among biophysical variables with the cumulative surface soil temperature. Linear and non-linear regression analysis indicated 62-69, 72-86 and 72-80% variation in Leaf area index, dry matter production and heat use efficiency in Indian mustard crop as a function of soil degree days. Below 60% variation in yield in Indian mustard was revealed as a function of soil temperature. In contrast, non-significant relationship between oil content and soil temperature was found, which suggests that oil accumulation in oilseed crops was not affected significantly by the soil temperature as an independent variable.


2002 ◽  
Vol 82 (3) ◽  
pp. 499-506 ◽  
Author(s):  
Zakaria M Sawan ◽  
Louis I Hanna ◽  
Willis L McCuistion

The cotton plant (Gossypium spp.) is sensitive to numerous environmental factors. This study was aimed at predicting effects of climatic factors grouped into convenient intervals (in days) on cotton flower and boll production compared with daily observations. Two uniformity field trials using the cotton (G. barbadense L.) cv. Giza 75 were conducted in 1992 and 1993 at the Agricultural Research Center, Giza, Egypt. Randomly chosen plants were used to record daily numbers of flowers and bolls during the reproductive stage (60 days). During this period, daily air temperature, temperature magnitude, evaporation, surface soil temperature, sunshine duration, humidity, and wind speed were recorded. Data, grouped into intervals of 2, 3, 4, 5, 6, and 10 d, were correlated with cotton production variables using regression analysis. Evaporation was found to be the most important climatic variable affecting flower and boll production, followed by humidity and sunshine duration. The least important variables were surface soil temperature at 0600 and minimum air temperature. The 5-d interval was found to provide the best correlation with yield parameters. Applying appropriate cultural practices that minimize the deleterious effects of evaporation and humidity could lead to an important improvement in cotton yield in Egypt. Key words: Cotton, flower production, boll production, boll retention


2021 ◽  
pp. 1-10
Author(s):  
X.M. Yang ◽  
W.D. Reynolds ◽  
C.F. Drury ◽  
M.D. Reeb

Although it is well established that soil temperature has substantial effects on the agri-environmental performance of crop production, little is known of soil temperatures under living cover crops. Consequently, soil temperatures under a crimson clover and white clover mix, hairy vetch, and red clover were measured for a cool, humid Brookston clay loam under a corn–soybean–winter wheat/cover crop rotation. Measurements were collected from August (after cover crop seeding) to the following May (before cover crop termination) at 15, 30, 45, and 60 cm depths during 2018–2019 and 2019–2020. Average soil temperatures (August–May) were not affected by cover crop species at any depth, or by air temperature at 60 cm depth. During winter, soil temperatures at 15, 30, and 45 cm depths were greater under cover crops than under a no cover crop control (CK), with maximum increase occurring at 15 cm on 31 January 2019 (2.5–5.7 °C) and on 23 January 2020 (0.8–1.9 °C). In spring, soil temperatures under standing cover crops were cooler than the CK by 0.1–3.0 °C at 15 cm depth, by 0–2.4 °C at the 30 and 45 cm depths, and by 0–1.8 °C at 60 cm depth. In addition, springtime soil temperature at 15 cm depth decreased by about 0.24 °C for every 1 Mg·ha−1 increase in live cover crop biomass. Relative to bare soil, cover crops increased near-surface soil temperature during winter but decreased near-surface soil temperature during spring. These temperature changes may have both positive and negative effects on the agri-environmental performance of crop production.


2010 ◽  
Vol 2 (2) ◽  
Author(s):  
Diandong Ren

AbstractBased on a 2-layer land surface model, a rather general variational data assimilation framework for estimating model state variables is developed. The method minimizes the error of surface soil temperature predictions subject to constraints imposed by the prediction model. Retrieval experiments for soil prognostic variables are performed and the results verified against model simulated data as well as real observations for the Oklahoma Atmospheric Surface layer Instrumentation System (OASIS). The optimization scheme is robust with respect to a wide range of initial guess errors in surface soil temperature (as large as 30 K) and deep soil moisture (within the range between wilting point and saturation). When assimilating OASIS data, the scheme can reduce the initial guess error by more than 90%, while for Observing Simulation System Experiments (OSSEs), the initial guess error is usually reduced by over four orders of magnitude.Using synthetic data, the robustness of the retrieval scheme as related to information content of the data and the physical meaning of the adjoint variables and their use in sensitivity studies are investigated. Through sensitivity analysis, it is confirmed that the vegetation coverage and growth condition determine whether or not the optimally estimated initial soil moisture condition leads to an optimal estimation of the surface fluxes. This reconciles two recent studies.With the real data experiments, it is shown that observations during the daytime period are the most effective for the retrieval. Longer assimilation windows result in more accurate initial condition retrieval, underlining the importance of information quantity, especially for schemes assimilating noisy observations.


Geoderma ◽  
2020 ◽  
Vol 378 ◽  
pp. 114617
Author(s):  
Chenyang Xu ◽  
John J. Qu ◽  
Xianjun Hao ◽  
Zhiliang Zhu ◽  
Laurel Gutenberg

1992 ◽  
Vol 35 (5) ◽  
pp. 1449-1455 ◽  
Author(s):  
F. B. Pierson ◽  
G. N. Flerchinger ◽  
J. R. Wight

Sign in / Sign up

Export Citation Format

Share Document