scholarly journals Assessing the effects of irrigated agricultural expansions on Lake Urmia using multi-decadal Landsat imagery and a sample migration technique within Google Earth Engine

Author(s):  
Amin Naboureh ◽  
Ainong Li ◽  
Hamid Ebrahimy ◽  
Jinhu Bian ◽  
Mohsen Azadbakht ◽  
...  
2020 ◽  
Vol 12 (19) ◽  
pp. 3120
Author(s):  
Luojia Hu ◽  
Nan Xu ◽  
Jian Liang ◽  
Zhichao Li ◽  
Luzhen Chen ◽  
...  

A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest.


2020 ◽  
Author(s):  
Luojia Hu ◽  
Wei Yao ◽  
Zhitong Yu ◽  
Lei Wang

&lt;p&gt;Mangrove forest is considered as one of the pivotal ecosystems to near-shore environment health, adjacent terrestrial ecosystems and even global climate change migration. However, for past two decades, they are declining rapidly. In order to take effective steps to prevent the extinction of mangroves, high spatial resolution information of large-scale mangrove distribution is urgent. Recent study has indicated that a suitable pixel size for extracting mangroves should be at least equal to 10 m. Hence, Sentinel imagery (Sentinel-1 C-band synthetic aperture radar (SAR) and Sentinel-2 Multi-Spectral Instrument (MSI) imagery) whose spatial resolution is 10 m may hold great potentials to achieve this goal, but there are limited researches investigating it. Therefore, in this study, we will explore the potential of Sentinel imagery to extract mangrove forests in China on the Google Earth Engine platform. Specifically, our study was mainly conducted around 3 questions: (1) Which Sentinel imagery provides a higher accuracy for mangrove forest mapping, Sentinel-1 SAR data or Sentinel-2 multi-spectral data? (2) which combination of features from Sentinel imagery provides the most accurate mangrove forest map? (3) Compared to 30-m resolution mangrove products derived from Landsat imagery, how does 10-m resolution map improve our knowledge about the distribution of mangrove forest in China?&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Our results show that: (1) The highest producer&amp;#8217;s accuracies (the reason why using producer&amp;#8217;s accuracy as an accuracy evaluation indicator here is that the omission errors in mangrove forest extent map are much larger than commission errors) of mangrove forest maps derived from Sentinel-1 and Sentinel-2 imagery are 91.76% and 90.39%, respectively, which means that the contributions of Sentinel-1 SAR and Sentinel-2 MSI imagery to mangrove mapping are similar; (2) The highest producer&amp;#8217;s accuracy of mangrove forest map at 10-m resolution is 95.4%. The mangrove forest map with the highest accuracy is obtained by combining quantiles of spectral and backscatter bands, spectral index, and texture index derived from time series of Sentinel-1 and Sentinel-2 imagery, indicating that the combination of Sentinel-1 SAR and Sentinel-2 MSI imagery is more useful in mangrove forest mapping than using them separately; (3) In China, the total area of mangrove forest extent at 10-m resolution is similar to that at 30-m resolution (20003 ha vs. 19220 ha). However, compared to 30-m resolution mangrove products, the 10-m resolution mangrove map identifies 1741 ha (occupying 8.7% of total mangrove forest area in China) mangrove forests in size smaller than 1 ha, which are especially important to low-lying coastal zone. This study demonstrates the feasibility of Sentinel imagery in large-scale mangrove forest mapping and gives guidance to map global mangrove forest at 10-m resolution in the future. &amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Xiao Zhang ◽  
Liangyun Liu ◽  
Tingting Zhao ◽  
Yuan Gao ◽  
Xidong Chen ◽  
...  

Abstract. Accurately mapping impervious surface dynamics has great scientific significance and application value for urban sustainable development research, anthropogenic carbon emission assessment and global ecological environment modeling. In this study, a novel and accurate global 30 m impervious surface dynamic dataset (GISD30) for 1985 to 2020 was produced using the spectral generalization method and time-series Landsat imagery, on the Google Earth Engine cloud-computing platform. Firstly, the global training samples and corresponding reflectance spectra were automatically derived from prior global 30 m land-cover products after employing the multitemporal compositing method and relative radiometric normalization. Then, spatiotemporal adaptive classification models, trained with the migrated reflectance spectra of impervious surfaces from 2020 and pervious surface samples in the same epoch for each 5° × 5° geographical tile, were applied to map the impervious surface in each period. Furthermore, a spatiotemporal consistency correction method was presented to minimize the effects of independent classification errors and improve the spatiotemporal consistency of impervious surface dynamics. Our global 30 m impervious surface dynamic model achieved an overall accuracy of 91.5 % and a kappa coefficient of 0.866 using 18,540 global time-series validation samples. Cross-comparisons with four existing global 30 m impervious surface products further indicated that our GISD30 dynamic product achieved the best performance in capturing the spatial distributions and spatiotemporal dynamics of impervious surfaces in various impervious landscapes. The statistical results indicated that the global impervious surface has doubled in the past 35 years, from 5.116 × 105 km2 in 1985 to 10.871 × 105 km2 in 2020, and Asia saw the largest increase in impervious surface area compared to other continents, with a total increase of 2.946 × 105 km2. Therefore, it was concluded that our global 30 m impervious surface dynamic dataset is an accurate and promising product, and could provide vital support in monitoring regional or global urbanization as well as in related applications. The global 30 m impervious surface dynamic dataset from 1985 to 2020 generated in this paper is free to access at http://doi.org/10.5281/zenodo.5220816 (Liu et al., 2021b).


2019 ◽  
Vol 12 (1) ◽  
pp. 55 ◽  
Author(s):  
Cong Ou ◽  
Jianyu Yang ◽  
Zhenrong Du ◽  
Yiming Liu ◽  
Quanlong Feng ◽  
...  

The greenhouse is the fastest growing food production approach and has become the symbol of protected agriculture with the development of agricultural modernization. Previous studies have verified the effectiveness of remote sensing techniques for mono-temporal greenhouse mapping. In practice, long-term monitoring of greenhouse from remote sensing data is vital for the sustainable management of protected agriculture and existing studies have been limited in understanding its spatiotemporal dynamics. This study aimed to generate multi-temporal greenhouse maps in a typical protected agricultural region (Shouguang region, north China) from 1990 to 2018 using Landsat imagery and the Google Earth Engine and quantify its spatiotemporal dynamics that occur as a consequence of the development of protected agriculture in the study area. The multi-temporal greenhouse maps were produced using random forest supervised classification at seven-time intervals, and the overall accuracy of the results greater than 90%. The total area of greenhouses in the study area expanded by 1061.94 km 2 from 1990 to 2018, with the largest growth occurring in 1995–2010. And a large number of increased greenhouses occurred in 10–35 km northwest and 0–5 km primary roads buffer zones. Differential change trajectories between the total area and number of patches of greenhouses were revealed using global change metrics. Results of five landscape metrics showed that various landscape patterns occurred in both spatial and temporal aspects. According to the value of landscape expansion index in each period, the growth mode of greenhouses was from outlying to edge-expansion and then gradually changed to infilling. Spatial heterogeneity, which measured by Shannon’s entropy, of the increased greenhouses was different between the global and local levels. These results demonstrated the advantage of utilizing Landsat imagery and Google Earth Engine for monitoring the development of greenhouses in a long-term period and provided a more intuitive perspective to understand the process of this special agricultural production approach than relevant social science studies.


2021 ◽  
Vol 13 (12) ◽  
pp. 2289
Author(s):  
Yuanyuan Di ◽  
Geli Zhang ◽  
Nanshan You ◽  
Tong Yang ◽  
Qiang Zhang ◽  
...  

The Tibetan Plateau (TP), known as “The Roof of World”, has expansive alpine grasslands and is a hotspot for climate change studies. However, cropland expansion and increasing anthropogenic activities have been poorly documented, let alone the effects of agricultural activities on food security and environmental change in the TP. The existing cropland mapping products do not depict the spatiotemporal characteristics of the TP due to low accuracies and inconsistent cropland distribution, which is affected by complicated topography and impedes our understanding of cropland expansion and its associated environmental impacts. One of the biggest challenges of cropland mapping in the TP is the diverse crop phenology across a wide range of elevations. To decrease the classification errors due to elevational differences in crop phenology, we developed two pixel- and phenology-based algorithms to map croplands using Landsat imagery and the Google Earth Engine platform along the Brahmaputra River and its two tributaries (BRTT) in the Tibet Autonomous Region, also known as the granary of TP, in 2015–2019. Our first phenology-based cropland mapping algorithm (PCM1) used different thresholds of land surface water index (LSWI) by considering varied crop phenology along different elevations. The second algorithm (PCM2) further offsets the phenological discrepancy along elevational gradients by considering the length and peak of the growing season. We found that PCM2 had a higher accuracy with fewer images compared with PCM1. The number of images for PCM2 was 279 less than PCM1, and the Matthews correlation coefficient for PCM2 was 0.036 higher than PCM1. We also found that the cropland area in BRTT was estimated to be 1979 ± 52 km2 in the late 2010s. Croplands were mainly distributed in the BRTT basins with elevations of 3800–4000 m asl. Our phenology-based methods were effective for mapping croplands in mountainous areas. The spatially explicit information on cropland area and distribution in the TP aid future research into the effects of cropland expansion on food security and environmental change in the TP.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2091 ◽  
Author(s):  
Dong-Dong Zhang ◽  
Lei Zhang

Urbanization in China is progressing rapidly and continuously, especially in the newly developed metropolitan areas. The Google Earth Engine (GEE) is a powerful tool that can be used to efficiently investigate these changes using a large repository of available optical imagery. This work examined land-cover changes in the central region of the lower Yangtze River and exemplifies the application of GEE using the random forest classification algorithm on Landsat dense stacks spanning the 30 years from 1987 to 2017. Based on the obtained time-series land-cover classification results, the spatiotemporal land-use/cover changes were analyzed, as well as the main factors driving the changes in different land-cover categories. The results show that: (1) The obtained land datasets were reliable and highly accurate, with an overall accuracy ranging from 88% to 92%. (2) Over the past 30 years, built-up areas have continued to expand, increasing from 537.9 km2 to 1500.5 km2, and the total area occupied by built-up regions has expanded by 178.9% to occupy an additional 962.7 km2. The surface water area first decreased, then increased, and generally showed an increasing trend, expanding by 17.9%, with an area increase of approximately 131 km2. Barren areas accounted for 6.6% of the total area in the period 2015–2017, which was an increase of 94.8% relative to the period 1987–1989. The expansion of the built-up area was accompanied by an overall 25.6% (1305.7 km2) reduction in vegetation. (3) The complexity of the key factors driving the changes in the regional surface water extent was made apparent, mainly including the changes in runoff of the Yangtze River and the construction of various water conservancy projects. The effects of increasing the urban population and expanding industrial development were the main factors driving the expansion of urban built-up areas and the significant reduction in vegetation. The advantages and limitations arising from land-cover mapping by using the Google Earth Engine are also discussed.


Sign in / Sign up

Export Citation Format

Share Document