National-scale mangrove forest mapping by using Sentinel-1 SAR and Sentinel-2 MSI imagery on the Google Earth Engine Platform

Author(s):  
Luojia Hu ◽  
Wei Yao ◽  
Zhitong Yu ◽  
Lei Wang

<p>Mangrove forest is considered as one of the pivotal ecosystems to near-shore environment health, adjacent terrestrial ecosystems and even global climate change migration. However, for past two decades, they are declining rapidly. In order to take effective steps to prevent the extinction of mangroves, high spatial resolution information of large-scale mangrove distribution is urgent. Recent study has indicated that a suitable pixel size for extracting mangroves should be at least equal to 10 m. Hence, Sentinel imagery (Sentinel-1 C-band synthetic aperture radar (SAR) and Sentinel-2 Multi-Spectral Instrument (MSI) imagery) whose spatial resolution is 10 m may hold great potentials to achieve this goal, but there are limited researches investigating it. Therefore, in this study, we will explore the potential of Sentinel imagery to extract mangrove forests in China on the Google Earth Engine platform. Specifically, our study was mainly conducted around 3 questions: (1) Which Sentinel imagery provides a higher accuracy for mangrove forest mapping, Sentinel-1 SAR data or Sentinel-2 multi-spectral data? (2) which combination of features from Sentinel imagery provides the most accurate mangrove forest map? (3) Compared to 30-m resolution mangrove products derived from Landsat imagery, how does 10-m resolution map improve our knowledge about the distribution of mangrove forest in China?</p><p> </p><p>Our results show that: (1) The highest producer’s accuracies (the reason why using producer’s accuracy as an accuracy evaluation indicator here is that the omission errors in mangrove forest extent map are much larger than commission errors) of mangrove forest maps derived from Sentinel-1 and Sentinel-2 imagery are 91.76% and 90.39%, respectively, which means that the contributions of Sentinel-1 SAR and Sentinel-2 MSI imagery to mangrove mapping are similar; (2) The highest producer’s accuracy of mangrove forest map at 10-m resolution is 95.4%. The mangrove forest map with the highest accuracy is obtained by combining quantiles of spectral and backscatter bands, spectral index, and texture index derived from time series of Sentinel-1 and Sentinel-2 imagery, indicating that the combination of Sentinel-1 SAR and Sentinel-2 MSI imagery is more useful in mangrove forest mapping than using them separately; (3) In China, the total area of mangrove forest extent at 10-m resolution is similar to that at 30-m resolution (20003 ha vs. 19220 ha). However, compared to 30-m resolution mangrove products, the 10-m resolution mangrove map identifies 1741 ha (occupying 8.7% of total mangrove forest area in China) mangrove forests in size smaller than 1 ha, which are especially important to low-lying coastal zone. This study demonstrates the feasibility of Sentinel imagery in large-scale mangrove forest mapping and gives guidance to map global mangrove forest at 10-m resolution in the future.  </p><p> </p>

2021 ◽  
Vol 8 ◽  
Author(s):  
Xue Liu ◽  
Temilola E. Fatoyinbo ◽  
Nathan M. Thomas ◽  
Weihe Wendy Guan ◽  
Yanni Zhan ◽  
...  

Coastal mangrove forests provide important ecosystem goods and services, including carbon sequestration, biodiversity conservation, and hazard mitigation. However, they are being destroyed at an alarming rate by human activities. To characterize mangrove forest changes, evaluate their impacts, and support relevant protection and restoration decision making, accurate and up-to-date mangrove extent mapping at large spatial scales is essential. Available large-scale mangrove extent data products use a single machine learning method commonly with 30 m Landsat imagery, and significant inconsistencies remain among these data products. With huge amounts of satellite data involved and the heterogeneity of land surface characteristics across large geographic areas, finding the most suitable method for large-scale high-resolution mangrove mapping is a challenge. The objective of this study is to evaluate the performance of a machine learning ensemble for mangrove forest mapping at 20 m spatial resolution across West Africa using Sentinel-2 (optical) and Sentinel-1 (radar) imagery. The machine learning ensemble integrates three commonly used machine learning methods in land cover and land use mapping, including Random Forest (RF), Gradient Boosting Machine (GBM), and Neural Network (NN). The cloud-based big geospatial data processing platform Google Earth Engine (GEE) was used for pre-processing Sentinel-2 and Sentinel-1 data. Extensive validation has demonstrated that the machine learning ensemble can generate mangrove extent maps at high accuracies for all study regions in West Africa (92%–99% Producer’s Accuracy, 98%–100% User’s Accuracy, 95%–99% Overall Accuracy). This is the first-time that mangrove extent has been mapped at a 20 m spatial resolution across West Africa. The machine learning ensemble has the potential to be applied to other regions of the world and is therefore capable of producing high-resolution mangrove extent maps at global scales periodically.


2020 ◽  
Vol 12 (19) ◽  
pp. 3120
Author(s):  
Luojia Hu ◽  
Nan Xu ◽  
Jian Liang ◽  
Zhichao Li ◽  
Luzhen Chen ◽  
...  

A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest.


2021 ◽  
pp. 659
Author(s):  
Ferman Setia Nugroho

Many natural mangrove forests have been converted into ponds or settlements. This study shows a method for monitoring mangrove areas at a spatial resolution of 25 meters using the 2007 and 2017 PALSAR/PALSAR-2 mosaic dataset in Delta Mahakam, Indonesia. To carry out this monitoring process, the Google Earth Engine tool is used. From the research area of 1505.25 km2, there was a reduction in the mangrove area of 30.76 km2, but there was also an increase of 29.5 km2.


2021 ◽  
Vol 11 (9) ◽  
pp. 4258
Author(s):  
Jordan R. Cissell ◽  
Steven W. J. Canty ◽  
Michael K. Steinberg ◽  
Loraé T. Simpson

In this paper, we present the highest-resolution-available (10 m) national map of the mangrove ecosystems of Belize. These important ecosystems are increasingly threatened by human activities and climate change, support both marine and terrestrial biodiversity, and provide critical ecosystem services to coastal communities in Belize and throughout the Mesoamerican Reef ecoregion. Previous national- and international-level inventories document Belizean mangrove forests at spatial resolutions of 30 m or coarser, but many mangrove patches and loss events may be too small to be accurately mapped at these resolutions. Our 10 m map addresses this need for a finer-scale national mangrove inventory. We mapped mangrove ecosystems in Belize as of 2020 by performing a random forest classification of Sentinel-2 Multispectral Instrument imagery in Google Earth Engine. We mapped a total mangrove area of 578.54 km2 in 2020, with 372.04 km2 located on the mainland and 206.50 km2 distributed throughout the country’s islands and cayes. Our findings are substantially different from previous, coarser-resolution national mangrove inventories of Belize, which emphasizes the importance of high-resolution mapping efforts for ongoing conservation efforts.


2021 ◽  
Author(s):  
Luojia Hu ◽  
Wei Yao ◽  
Zhitong Yu ◽  
Yan Huang

&lt;p&gt;A high resolution mangrove map (e.g., 10-m), which can identify mangrove patches with small size (&lt; 1 ha), is a central component to quantify ecosystem functions and help government take effective steps to protect mangroves, because the increasing small mangrove patches, due to artificial destruction and plantation of new mangrove trees, are vulnerable to climate change and sea level rise, and important for estimating mangrove habitat connectivity with adjacent coastal ecosystems as well as reducing the uncertainty of carbon storage estimation. However, latest national scale mangrove forest maps mainly derived from Landsat imagery with 30-m resolution are relatively coarse to accurately characterize the distribution of mangrove forests, especially those of small size (area &lt; 1 ha). Sentinel imagery with 10-m resolution provide the opportunity for identifying these small mangrove patches and generating high-resolution mangrove forest maps. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features for random forest to classify mangroves in China. We found that Sentinel-2 imagery is more effective than Sentinel-1 in mangrove extraction, and a combination of SAR and MSI imagery can get a better accuracy (F1-score of 0.94) than using them separately (F1-score of 0.88 using Sentinel-1 only and 0.895 using Sentinel-2 only). The 10-m mangrove map derived by combining SAR and MSI data identified 20,003 ha mangroves in China and the areas of small mangrove patches (&lt; 1 ha) was 1741 ha, occupying 8.7% of the whole mangrove area. The largest area (819 ha) of small mangrove patches is located in Guangdong Province, and in Fujian the percentage of small mangrove patches in total mangrove area is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest maps are expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of mangrove forest.&lt;/p&gt;


2018 ◽  
Vol 11 (1) ◽  
pp. 43 ◽  
Author(s):  
Masoud Mahdianpari ◽  
Bahram Salehi ◽  
Fariba Mohammadimanesh ◽  
Saeid Homayouni ◽  
Eric Gill

Wetlands are one of the most important ecosystems that provide a desirable habitat for a great variety of flora and fauna. Wetland mapping and modeling using Earth Observation (EO) data are essential for natural resource management at both regional and national levels. However, accurate wetland mapping is challenging, especially on a large scale, given their heterogeneous and fragmented landscape, as well as the spectral similarity of differing wetland classes. Currently, precise, consistent, and comprehensive wetland inventories on a national- or provincial-scale are lacking globally, with most studies focused on the generation of local-scale maps from limited remote sensing data. Leveraging the Google Earth Engine (GEE) computational power and the availability of high spatial resolution remote sensing data collected by Copernicus Sentinels, this study introduces the first detailed, provincial-scale wetland inventory map of one of the richest Canadian provinces in terms of wetland extent. In particular, multi-year summer Synthetic Aperture Radar (SAR) Sentinel-1 and optical Sentinel-2 data composites were used to identify the spatial distribution of five wetland and three non-wetland classes on the Island of Newfoundland, covering an approximate area of 106,000 km2. The classification results were evaluated using both pixel-based and object-based random forest (RF) classifications implemented on the GEE platform. The results revealed the superiority of the object-based approach relative to the pixel-based classification for wetland mapping. Although the classification using multi-year optical data was more accurate compared to that of SAR, the inclusion of both types of data significantly improved the classification accuracies of wetland classes. In particular, an overall accuracy of 88.37% and a Kappa coefficient of 0.85 were achieved with the multi-year summer SAR/optical composite using an object-based RF classification, wherein all wetland and non-wetland classes were correctly identified with accuracies beyond 70% and 90%, respectively. The results suggest a paradigm-shift from standard static products and approaches toward generating more dynamic, on-demand, large-scale wetland coverage maps through advanced cloud computing resources that simplify access to and processing of the “Geo Big Data.” In addition, the resulting ever-demanding inventory map of Newfoundland is of great interest to and can be used by many stakeholders, including federal and provincial governments, municipalities, NGOs, and environmental consultants to name a few.


2021 ◽  
Vol 3 ◽  
Author(s):  
Seth Peterson ◽  
Greg Husak

Agriculture in sub-Saharan Africa consists primarily of smallholder farms of rainfed crops. Historically, satellite data were too coarse to account for the heterogeneity in these landscapes. Sentinel-2 data have improved spectral resolution and much higher spatial resolution (10 m) than previously available satellites with global coverage, such as Landsat or MODIS, making mapping smallholder farms possible. Spectral mixture analysis was used to convert the Sentinel-2 signal into fractions of green vegetation, non-photosynthetic vegetation, soil, and shade endmembers. Very high spatial resolution imagery in Google Earth Pro was used to identify locations of crop and natural vegetation classes, with over 20,000 reference points interpreted. The high temporal resolution of Sentinel-2 (5 days repeat) allows for classification of landcover based on the phenological signal, with natural areas having smoothly varying amounts of photosynthetic vegetation annually, while cropped areas show more abrupt changes, and also the presence of bare soil due to agricultural activity at some point during the year. We summarized the endmember values using monthly medians, extracted values for the reference data points, randomly split them into training and test data sets, and input the training data into the random forests algorithm in Google Earth Engine to map crop area. We divided southern and central Malawi into tiles, and found crop/no crop classification accuracies on the test data for each tile to be between 87 and 93%. The 10 m map of crop area was aggregated to the district level and showed an R2 of 0.74 with ground-based statistics from the Malawi government and 0.79 with a remotely sensed product developed by the USGS.


2019 ◽  
Vol 11 (21) ◽  
pp. 2479 ◽  
Author(s):  
Huiying Li ◽  
Mingming Jia ◽  
Rong Zhang ◽  
Yongxing Ren ◽  
Xin Wen

Information on mangrove species composition and distribution is key to studying functions of mangrove ecosystems and securing sustainable mangrove conservation. Even though remote sensing technology is developing rapidly currently, mapping mangrove forests at the species level based on freely accessible images is still a great challenge. This study built a Sentinel-2 normalized difference vegetation index (NDVI) time series (from 2017-01-01 to 2018-12-31) to represent phenological trajectories of mangrove species and then demonstrated the feasibility of phenology-based mangrove species classification using the random forest algorithm in the Google Earth Engine platform. It was found that (i) in Zhangjiang estuary, the phenological trajectories (NDVI time series) of different mangrove species have great differences; (ii) the overall accuracy and Kappa confidence of the classification map is 84% and 0.84, respectively; and (iii) Months in late winter and early spring play critical roles in mangrove species mapping. This is the first study to use phonological signatures in discriminating mangrove species. The methodology presented can be used as a practical guideline for the mapping of mangrove or other vegetation species in other regions. However, future work should pay attention to various phenological trajectories of mangrove species in different locations.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 454
Author(s):  
Lingfei Shi ◽  
Feng Ling

As one of the widely concerned urban climate issues, urban heat island (UHI) has been studied using the local climate zone (LCZ) classification scheme in recent years. More and more effort has been focused on improving LCZ mapping accuracy. It has become a prevalent trend to take advantage of multi-source images in LCZ mapping. To this end, this paper tried to utilize multi-source freely available datasets: Sentinel-2 multispectral instrument (MSI), Sentinel-1 synthetic aperture radar (SAR), Luojia1-01 nighttime light (NTL), and Open Street Map (OSM) datasets to produce the 10 m LCZ classification result using Google Earth Engine (GEE) platform. Additionally, the derived datasets of Sentinel-2 MSI data were also exploited in LCZ classification, such as spectral indexes (SI) and gray-level co-occurrence matrix (GLCM) datasets. The different dataset combinations were designed to evaluate the particular dataset’s contribution to LCZ classification. It was found that: (1) The synergistic use of Sentinel-2 MSI and Sentinel-1 SAR data can improve the accuracy of LCZ classification; (2) The multi-seasonal information of Sentinel data also has a good contribution to LCZ classification; (3) OSM, GLCM, SI, and NTL datasets have some positive contribution to LCZ classification when individually adding them to the seasonal Sentinel-1 and Sentinel-2 datasets; (4) It is not an absolute right way to improve LCZ classification accuracy by combining as many datasets as possible. With the help of the GEE, this study provides the potential to generate more accurate LCZ mapping on a large scale, which is significant for urban development.


Sign in / Sign up

Export Citation Format

Share Document