Plastic instability and strain rate sensitivity of ultrafine-grained iron

2009 ◽  
Vol 487 (1-2) ◽  
pp. 517-521 ◽  
Author(s):  
Yi Ding ◽  
Jianhua Jiang ◽  
Aidang Shan
2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


2010 ◽  
Vol 667-669 ◽  
pp. 707-712 ◽  
Author(s):  
Xiao Yan Liu ◽  
Xi Cheng Zhao ◽  
Xi Rong Yang

Ultrafine-grained (UFG) commercially pure (CP) Ti with a grain size of about 200 nm was produced by ECAP up to 8 passes using route BC at room temperature. For ECAP processing a proper die set was designed and constructed with an internal channel angle Φ of 120° and an outer arc of curvature Ψ of 20°. Strain rate sensitivity of UFG CP-Ti and CG CP-Ti were investigated by compression tests in the temperature range of 298~673K and strain rate range of 10-4~100s-1 using Gleeble simulator machine. Evolution of the microstructure during compression testing was observed using optical microscopy (OM) and transmission electron microscopy (TEM). Strain rate sensitivity value m of the UFG CP-Ti has been measured and is found to increase with increasing temperature and decreasing strain rate, and is enhanced compared to that of CG CP-Ti. Result of the deformation activation energy determination of UFG CP-Ti indicates that the deformation mechanism in UFG CP-Ti is correlated to the grain boundaries.


Minor element levels vary considerably in commercial purity ( ca .99.5 % Al) aluminium alloy sheet obtained from various sources. Minor elements may be present in solution or as second phase particles formed during solidification or subsequent processing. The present work is largely concerned with the effects of elements in solution on strain-rate sensitivity and ductility. Recent treatments of plastic instability in tensile tests incorporate the strain rate sensitivity and note its importance in determining the strain at which instability occurs (Ghosh 1977; Marciniak 1974). Tensile properties have been determined on a range of aluminium sheet samples. The results show that small increases in solute concentration can result in a change from positive (flow stress increasing with strain rate) to negative strain rate sensitivity. The rate sensitivity was found to be strain dependent and this had led to a reconsideration of the effect of strain rate sensitivity on ductility. The work suggests that it is not the absolute value of the rate sensitivity that determines its effect on the strain to plastic instability, but rather the sign of its variation with strain. If this is positive then the strain to instability exceeds that expected in the absence of rate sensitivity; if the slope is negative the opposite trend is observed.


Author(s):  
R.C. Picu

This article presents a review of the strain rate-dependent mechanical behavior of aluminum and its commercial alloys. The importance of strain rate sensitivity (SRS) stems from its relation with ductility and formability. Plastic deformation is stable and localization less likely in alloys with higher SRS. After discussing the basic formulation used to interpret experimental data, the methods used to measure the SRS parameter are presented. This is followed by a brief review of the main mechanisms that render the flow stress sensitive to the deformation rate, including mechanisms leading to positive and negative SRS. The generic dependence of the SRS parameter on the strain, temperature, and strain rate are further presented using data for pure Al. The effect of alloying is analyzed in the context of solid solutions and precipitated commercial alloys. Results on solid solutions are discussed separately at low and elevated temperatures in order to evidence the role of solute diffusion on SRS. This article ends with a brief discussion of the grain size dependence of SRS, with emphasis on recent efforts to produce nanocrystalline and ultrafine-grained materials by severe plastic deformation.


2008 ◽  
Vol 485 (1-2) ◽  
pp. 325-333 ◽  
Author(s):  
R. Rodríguez-Baracaldo ◽  
J.A. Benito ◽  
J. Caro ◽  
J.M. Cabrera ◽  
J.M. Prado

Sign in / Sign up

Export Citation Format

Share Document