X-ray diffraction and Raman spectroscopy on Gd2(Ti2−yTey)O7 prepared at high pressure and high temperature

2010 ◽  
Vol 504 (2) ◽  
pp. 446-451 ◽  
Author(s):  
A.R. Heredia ◽  
M. Quintana García ◽  
J.L. Pérez Mazariego ◽  
R. Escamilla
Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 780
Author(s):  
Shijie Huang ◽  
Jingui Xu ◽  
Chunfa Chen ◽  
Bo Li ◽  
Zhilin Ye ◽  
...  

The equation of state and stability of topaz at high-pressure/high-temperature conditions have been investigated by in situ synchrotron X-ray diffraction (XRD) and Raman spectroscopy in this study. No phase transition occurs on topaz over the experimental pressure–temperature (P-T) range. The pressure–volume data were fitted by the third-order Birch–Murnaghan equation of state (EoS) with the zero-pressure unit–cell volume V0 = 343.86 (9) Å3, the zero-pressure bulk modulus K0 = 172 (3) GPa, and its pressure derivative K’0 = 1.3 (4), while the obtained K0 = 155 (2) GPa when fixed K’0 = 4. In the pressure range of 0–24.4 GPa, the vibration modes of in-plane bending OH-groups for topaz show non-linear changes with the increase in pressure, while the other vibration modes show linear changes. Moreover, the temperature–volume data were fitted by Fei’s thermal equation with the thermal expansion coefficient α300 = 1.9 (1) × 10−5 K−1 at 300 K. Finally, the P-T stability of topaz was studied by a synchrotron-based single-crystal XRD at simultaneously high P-T conditions up to ~10.9 GPa and 700 K, which shows that topaz may maintain a metastable state at depths above 370 km in the upper mantle along the coldest subducting slab geotherm. Thus, topaz may be a potential volatile-carrier in the cold subduction zone. It can carry hydrogen and fluorine elements into the deep upper mantle and further affect the geochemical behavior of the upper mantle.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 597-603
Author(s):  
Birgit Fuchs ◽  
Hubert Huppertz

AbstractThe non-centrosymmetric scandium borate ScB6O9(OH)3 was obtained through a high-pressure/high-temperature experiment at 6 GPa and 1473 K. Single-crystal X-ray diffraction revealed that the structure is isotypic to InB6O9(OH)3 containing borate triple layers separated by scandium layers. The compound crystallizes in the space group Fdd2 with the lattice parameters a = 38.935(4), b = 4.4136(4), and c = 7.6342(6) Å. Powder X-ray diffraction and vibrational spectroscopy were used to further characterize the compound and verify the proposed structure solution.


2015 ◽  
Vol 70 (3) ◽  
pp. 183-190 ◽  
Author(s):  
Gerhard Sohr ◽  
Nina Ciaghi ◽  
Klaus Wurst ◽  
Hubert Huppertz

AbstractSingle crystals of the hydrous cadmium borate Cd6B22O39·H2O were obtained through a high-pressure/high-temperature experiment at 4.7 GPa and 1000 °C using a Walker-type multianvil apparatus. CdO and partially hydrolyzed B2O3 were used as starting materials. A single crystal X-ray diffraction study has revealed that the structure of Cd6B22O39·H2O is similar to that of the type M6B22O39·H2O (M=Fe, Co). Layers of corner-sharing BO4 groups are interconnected by BO3 groups to form channels containing the metal cations, which are six- and eight-fold coordinated by oxygen atoms. The compound crystallizes in the space group Pnma (no. 62) [R1=0.0379, wR2=0.0552 (all data)] with the unit cell dimensions a=1837.79(5), b=777.92(2), c=819.08(3) pm, and V=1171.00(6) Å3. The IR and Raman spectra reflect the structural characteristics of Cd6B22O39·H2O.


2012 ◽  
Vol 192 ◽  
pp. 356-359 ◽  
Author(s):  
Ye Wu ◽  
Qian Zhang ◽  
Xiang Wu ◽  
Shan Qin ◽  
Jing Liu

2018 ◽  
Vol 89 (8) ◽  
pp. 1488-1499 ◽  
Author(s):  
Cheng Zhang ◽  
Ling Zhong ◽  
Dingfei Wang ◽  
Fengxiu Zhang ◽  
Guangxian Zhang

Grafting graphene on polyethylene terephthalate (PET) fibers requires a large number of environmentally harmful chemicals. In this study, a facile high-temperature and high-pressure method of inlaying graphene nanoplatelets was applied to fabricate anti-ultraviolet (UV) and anti-static graphene/PET composites. The resulting graphene-inlaid (GI) PET fabric, which showed excellent anti-ultraviolet and anti-static properties, was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform–infrared spectroscopy and X-ray diffraction. Results suggested that graphene had been inlaid into the PET fiber surface, and that the optimal inlaying conditions were as follows: inlaying temperature 200℃, inlaying pressure 15 MPa, and inlaying time 15 s. The UV protection factor of the GI PET fabric under optimal conditions could reach 50+ and was maintained at 50+ after 50 laundering cycles. The peak values of the static voltage and its half-time in the GI PET fabric could be reduced from 500.0 V to 10.0 V and from 7.39 s to 0.53 s, respectively, and the electrical resistivity of the GI PET fabric was 36.04 ± 0.14 kΩ.cm. The breaking strengths of the GI PET fabrics could be retained over 70.0% that of the pure PET fabric. The facile high-temperature and high-pressure inlaying method is an eco-friendly technique that requires very few chemicals, except for ethyl alcohol.


Sign in / Sign up

Export Citation Format

Share Document