Synthesis and electrochemical properties of nanoporous carbon electrode materials for supercapacitors

2017 ◽  
Vol 707 ◽  
pp. 337-340 ◽  
Author(s):  
Yulia Mateyshina ◽  
Arina Ukhina ◽  
Larisa Brezhneva ◽  
Nikolai Uvarov
2016 ◽  
Vol 8 (3) ◽  
pp. 03017-1-03017-7 ◽  
Author(s):  
I. F. Myronyuk ◽  
◽  
V. I. Mandzyuk ◽  
V. M. Sachko ◽  
R. P. Lisovsky ◽  
...  

2016 ◽  
Vol 8 (4(1)) ◽  
pp. 04006-1-04006-7 ◽  
Author(s):  
I. F. Myronyuk ◽  
◽  
V. I. Mandzyuk ◽  
V. M. Sachko ◽  
R. P. Lisovsky ◽  
...  

2016 ◽  
Vol 17 (2) ◽  
pp. 262-268
Author(s):  
I.F. Myronyuk ◽  
V.I. Mandzyuk ◽  
V.M. Sachko

The known methods of synthesis of carbon materials for electric symmetric electrochemical capacitors are considered. Particular attention is drawn to the methods of exo- and endotemplate synthesis of carbon materials. It is concluded that further improving of the electrochemical properties of the electrodes will be connected with the search for qualitatively new ways of carbon materials activation that provide microcrystallites a graphite-likestate and affinity of their surface to the electrolytes.


2016 ◽  
Vol 163 (10) ◽  
pp. A2139-A2148 ◽  
Author(s):  
B. Mirvaux ◽  
N. Recham ◽  
J. Miot ◽  
M. Courty ◽  
S. Bernard ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pengfei Hao ◽  
Yanjie Yi ◽  
Youming Li ◽  
Yi Hou

Abstract A green and economically viable route without any additional activation agents and templates has been developed to synthesize biomass-derived nanoporous carbon for superior electric double-layer capacitors via direct pyrolysis of dried black liquor powders, which is the main waste in pulping and paper-making industry. The resulting carbon materials present hierarchical porosity and moderate specific surface area of 1134  m 2 g − 1 {\text{m}^{2}}\hspace{0.1667em}{\text{g}^{-1}} , as well as multi-heteroatoms co-doping such as N, S, Na and K, which exist originally in black liquor. When evaluated as electrode materials for supercapacitors in 6 M KOH aqueous electrolyte, the-prepared carbon samples deliver a significantly high gravimetric capacitance of 331  F g − 1 \text{F}\hspace{0.1667em}{\text{g}^{-1}} at 0.5  A g − 1 \text{A}\hspace{0.1667em}{\text{g}^{-1}} in a three-electrode system. Moreover, the fabricated symmetric supercapacitor also possesses a gravimetric capacitance of 211  F g − 1 \text{F}\hspace{0.1667em}{\text{g}^{-1}} at 0.5  A g − 1 \text{A}\hspace{0.1667em}{\text{g}^{-1}} , with an impressive long-term cycling stability of 92 % capacitance retention after 3000 cycles. This work explores a suitable and scalable approach for mass production of high-performance electrode materials with industrial wastes on the base of cost-efficiency and environment-friendship.


Author(s):  
N Ben Mansour ◽  
M Hjiri ◽  
R Dahari ◽  
L El Mir ◽  
M Bonyani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document