Design of templated nanoporous carbon electrode materials with substantial high specific surface area for simultaneous determination ofbiomolecules

2013 ◽  
Vol 42 ◽  
pp. 163-169 ◽  
Author(s):  
Shenghai Zhou ◽  
Hongyan Shi ◽  
Xun Feng ◽  
Kaiwen Xue ◽  
Wenbo Song
2011 ◽  
Vol 233-235 ◽  
pp. 378-381
Author(s):  
Ling Zhang ◽  
Dan Zuo ◽  
Su Li Guo ◽  
Zhong Cao ◽  
Jun Liu ◽  
...  

A kind of bamboo char with high specific surface area has been studied as the absorption material of the activated carbon electrodes, and the electrosorptive deionization ability of the as-obtained electrodes for elimination of metal ions in tap water has been examined under certain direct voltage. The effects of the distance between the elect rode plates, and the numbers of the electrode plates have been investigated in detail. The results show that the electrodes exhibit the optimal deionization ability over 2 cm of distance between the electrode plates and 4 couples of the elect rode plates. The reverse wash treatment indicates that the activated carbon electrodes can be cycle used. The efficiency order of the electrosorptive deionization of different metal ions on the activated carbon electrode has been summarized as follows: Pb2+>Cu2+>Cr3+>Cd2+.


2018 ◽  
Vol 6 (30) ◽  
pp. 14644-14650 ◽  
Author(s):  
Shiyong Wang ◽  
Gang Wang ◽  
Tingting Wu ◽  
Yunqi Zhang ◽  
Fei Zhan ◽  
...  

BCN nanosheets show a pore structure with a high specific surface area and are investigated as CDI electrode materials for the first time.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2455 ◽  
Author(s):  
Wen Yang ◽  
Yanjie Li ◽  
Yanyan Feng

Carbon electrode materials for double layer capacitors have attracted much attention, due to their low cost and abundant sources. Their low specific capacitance, however, hinders the development of carbon electrode materials. In this paper, the large specific surface area commercial activated carbons, rich in micropores, were initially oxygen-functionalized by treatment using concentrated H2SO4, saturated (NH4)2S2O8, and H2SO4/(NH4)2S2O4 mixed oxidants, respectively. The as-prepared samples were analyzed using N2 adsorption/desorption isotherms, X-ray photoelectron spectroscopy, and Boehm titration, and used as electrode materials for supercapacitors. Characterization results displayed that the oxidation treatment decreased the specific surface area along with increasing oxygen content. The electrode test showed that the electrochemical activity increased as oxygen content increased. The result that oxygen-functionalized activated carbon, even with a lower specific surface area but much more oxygen content, had higher capacity than pristine activated carbon, tells of the critical role of oxygen functional groups. The excellent capacitive performance suggests a good potential for oxygen functional carbon material to be a highly promising electrode material for supercapacitors.


RSC Advances ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 6967-6977 ◽  
Author(s):  
Weibing Xu ◽  
Bin Mu ◽  
Aiqin Wang

Well-defined porous carbon nanoflakes with a high specific surface area have been successfully prepared via pyrolytic carbonization and alkali activation treatment of an easily available kapok fiber.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Fuming Zhang ◽  
Xiangshang Xiao ◽  
Dayakar Gandla ◽  
Zhaoxi Liu ◽  
Daniel Q. Tan ◽  
...  

We report here on a hollow-fiber hierarchical porous carbon exhibiting an ultra-high specific surface area, synthesized by a facile method of carbonization and activation, using the Metaplexis Japonica (MJ) shell. The Metaplexis Japonica-based activated carbon demonstrated a very high specific surface area of 3635 m2 g−1. Correspondingly, the derived carbonaceous material delivers an ultra-high capacitance and superb cycle life in an alkaline electrolyte. The pore-ion size compatibility is optimized using tailored hierarchical porous carbon and different ion sized organic electrolytes. In ionic liquids nonaqueous based electrolytes we tailored the MJ carbon pore structure to the electrolyte ion size. The corresponding supercapacitor shows a superior rate performance and low impedance, and the device records specific energy and specific power densities as high as 76 Wh kg−1 and 6521 W kg−1, as well as a pronounced cycling durability in the ionic liquid electrolytes. Overall, we suggest a protocol for promising carbonaceous electrode materials enabling superior supercapacitors performance.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


Sign in / Sign up

Export Citation Format

Share Document