scholarly journals In-situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy

2017 ◽  
Vol 710 ◽  
pp. 539-546 ◽  
Author(s):  
Ehsan Ghassemali ◽  
Reshma Sonkusare ◽  
Krishanu Biswas ◽  
Nilesh P. Gurao
2018 ◽  
Vol 98 (9) ◽  
pp. 400-409 ◽  
Author(s):  
Ehsan Ghassemali ◽  
Reshma Sonkusare ◽  
Krishanu Biswas ◽  
Nilesh P. Gurao

1986 ◽  
Vol 82 ◽  
Author(s):  
J. C. Bilello

ABSTRACTThe application of relatively low resolution x-ray topography methods, typically ∿ 1 micrometer, is limited in studies which involve large scale dislocation networks. However, the ability to non-destructively image wide areas for “thick” specimens at high intensity with a tunable x-ray source makes the synchrotron an ideal probe for a range of problems previously inaccessible by other methods. Some examples will be discussed such as: (a) crack initiation and propagation in fatigued bicrystals, (b) real-time in situ plastic deformation studies in strain-annealed Mo crystals, and (c) strain distributions in vapor deposited and LPE thin films on Si and GaAs substrates.


Author(s):  
T. Hajilou ◽  
Y. Deng ◽  
N. Kheradmand ◽  
A. Barnoush

Hydrogen (H) enhanced cracking was studied in Fe–3wt%Si by means of in situ electrochemical microcantilever bending test. It was clearly shown that the presence of H causes hydrogen embrittlement (HE) by triggering crack initiation and propagation at the notch where stress concentration is existing. Additionally, the effect of carbon content and the presence of a grain boundary (GB) in the cantilever were studied. It was shown that in the presence of H the effect of carbon atom on pinning the dislocations is reduced. On the other hand, the presence of a GB, while the chemical composition of material kept constant, will promote the HE. Crack initiation and propagation occur in the presence of H, while the notch blunting was observed for both single and bi-crystalline beams bent in air. Post-mortem analysis of the crack propagation path showed that a transition from transgranular fracture to intragranular fracture mechanism is highly dependent on the position of the stress concentration relative to the GB. This article is part of the themed issue ‘The challenges of hydrogen and metals’.


Sign in / Sign up

Export Citation Format

Share Document