Studying the role of CdS on the TiO2 surface passivation to improve CdSeTe quantum dots sensitized solar cell

2017 ◽  
Vol 728 ◽  
pp. 1058-1064 ◽  
Author(s):  
Diego Esparza ◽  
Guillermo Bustos-Ramirez ◽  
Ramón Carriles ◽  
Tzarara López-Luke ◽  
Isaac Zarazúa ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 640
Author(s):  
Artem I. Khrebtov ◽  
Vladimir V. Danilov ◽  
Anastasia S. Kulagina ◽  
Rodion R. Reznik ◽  
Ivan D. Skurlov ◽  
...  

The passivation influence by ligands coverage with trioctylphosphine oxide (TOPO) and TOPO including colloidal CdSe/ZnS quantum dots (QDs) on optical properties of the semiconductor heterostructure, namely an array of InP nanowires (NWs) with InAsP nanoinsertion grown by Au-assisted molecular beam epitaxy on Si (111) substrates, was investigated. A significant dependence of the photoluminescence (PL) dynamics of the InAsP insertions on the ligand type was shown, which was associated with the changes in the excitation translation channels in the heterostructure. This change was caused by a different interaction of the ligand shells with the surface of InP NWs, which led to the formation of different interfacial low-energy states at the NW-ligand boundary, such as surface-localized antibonding orbitals and hybridized states that were energetically close to the radiating state and participate in the transfer of excitation. It was shown that the quenching of excited states associated with the capture of excitation to interfacial low-energy traps was compensated by the increasing role of the “reverse transfer” mechanism. As a result, the effectiveness of TOPO-CdSe/ZnS QDs as a novel surface passivation coating was demonstrated.



Author(s):  
S.K. Ghoshal ◽  
K.P. Jain ◽  
R. Elliott

We study (through computer simulation) the variation of the band gap as a function of sizes and shapes of small Silicon (Si) dots using pseudo-potential approach. We have used empirical pseudo-potential Hamiltonian and a plane wave basis expansion and a basic tetrahedral structure. It is found that the gap decreases for increasing dot size. Furthermore, the band gap increases as much as 0.13eV on passivation the surface of the dot with hydrogen. So both quantum confinement and surface passivation determine the optical and electronic properties of Si quantum dots. Visible luminescence is probably due to radiative recombination of electrons and holes in the quantum confined nanostructures. The effect of passivation of the surface dangling bonds by hydrogen atoms and the role of surface states on the gap energy as well as on the HOMO-LUMO states has also been examined. We have investigated the entire energy spectrum starting from the very low lying ground state to the very high lying excited states for silicon dots having 5, 18, 17 and 18 atoms. The results for the size dependence of the HOMO-LUMO gap and the wave functions for the bonding-antibonding states are presented and the importance of the confinement and the role of hydrogen passivation on the confinement are also discussed.



MRS Advances ◽  
2018 ◽  
Vol 3 (55) ◽  
pp. 3255-3261 ◽  
Author(s):  
Aaron Forde ◽  
Talgat Inerbaev ◽  
Dmitri Kilin

ABSTRACTApplication of lead-halide perovskite nanostructures for photovoltaic and light emitting applications depends on fashion of the surface termination. The reasonable choice of surface ligands for perovskite nanostructures prevent formation of trap states and contribute to chemical stability, wide opening of the bandgap, and intensity of absorption and photoluminescence of perovskite nanostructures. This work provides atomistic arguments for dual ligand protocol of surface passivation of fully inorganic perovskite quantum dots with fully organic ligands being a mix of cations (ethyl-ammonium) and anions (acetic) in nearly equal proportions. Computed binding energies of either individual ligands or anion-cation pairs demonstrate high stability in comparison to thermal energy and are concluded to be favourable choice in synthesis of colloidal perovskite quantum dots for light emitting applications.





2019 ◽  
Vol 42 (2) ◽  
Author(s):  
M Aouassa ◽  
M A Zrir ◽  
I Jadli ◽  
L S Hassayoun ◽  
R Mghaieth ◽  
...  


2004 ◽  
Vol 270 (3-4) ◽  
pp. 380-383 ◽  
Author(s):  
Mark Fernée ◽  
Andrew Watt ◽  
Jamie Warner ◽  
Jamie Riches ◽  
Norman Heckenberg ◽  
...  


2000 ◽  
Vol 642 ◽  
Author(s):  
Hatim Mohamed El-Khair ◽  
Ling Xu ◽  
Xinfan Huang ◽  
Minghai Li ◽  
Xiaofeng Gu ◽  
...  

ABSTRACTWurtzite structure monodisperse ZnS quantum dots (QDs) of 1 to 5 nm diameter, synthesized by colloidal chemical method, were confirmed by transmission electron microscopy (TEM) images and electron diffraction (ED) patterns. Enhanced blue shifted band edge emission from Zn(OH)2 capped ZnS QDs with decreasing size has been observed, which indicates the role of inorganic surface passivation and hence supports the quantum size effect. Detectable far-red shifted emission from bare ZnS QDs has been observed when QDs precursors and stabilizer dispersed in solvents with different polarities. This emission is attributed to the surface trap states of different energies.



2020 ◽  
Vol 175 ◽  
pp. 108118 ◽  
Author(s):  
Farhad Jahantigh ◽  
S.M. Bagher Ghorashi ◽  
Amir Bayat




2021 ◽  
pp. 2100039
Author(s):  
Lingam Sravani ◽  
Soumyaranjan Routray ◽  
Kumar Prasannajit Pradhan ◽  
Maykel Courel Piedrahita


Sign in / Sign up

Export Citation Format

Share Document