scholarly journals In-situ TEM analysis of the phase transformation mechanism of a Cu–Al–Ni shape memory alloy

2019 ◽  
Vol 808 ◽  
pp. 151743 ◽  
Author(s):  
Tae-Hoon Kim ◽  
Gaoyuan Ouyang ◽  
Jonathan D. Poplawsky ◽  
Matthew J. Kramer ◽  
Valery I. Levitas ◽  
...  
2003 ◽  
Vol 792 ◽  
Author(s):  
X. T. Zu ◽  
F.R. Wan ◽  
S. Zhu ◽  
L. M. Wang

ABSTRACTTiNi shape memory alloy (SMA) has potential applications for nuclear reactors and its phase stability under irradiation is becoming an important topic. Some irradiation-induced diffusion-dependent phase transformations, such as amorphization, have been reported before. In the present work, the behavior of diffusion-independent phase transformation in TiNi SMA was studied by electron irradiation at room temperature. The effect of irradiation on the martensitic transformation of TiNi shape memory alloys was studied by Transmission Electron Microscopy (TEM) with in-situ observation and differential scanning calorimeter (DSC). The results of TEM and DSC measurements show that the microstructure of samples is R phase at room temperature. Electron irradiations were carried out using several different TEM with accelerating voltage of 200 kV, 300 kV, 400 kV and 1000 kV. Also the accelerating voltage in the same TEM was changed to investigate the critical voltage for the effect of irradiation on phase transformation. It was found that a phase transformation occurred under electron irradiation above 320 kV, but never appeared at 300 kV or lower accelerating voltage. Such phase transformation took place in a few seconds of irradiation and was independent of atom diffusion. The mechanism of Electron-irradiation-induced the martensitic transformation due to displacements of atoms from their lattice sites produced by the accelerated electrons.


2002 ◽  
Vol 74 (0) ◽  
pp. s1121-s1123 ◽  
Author(s):  
P. Luk�? ◽  
P. ?ittner ◽  
D. Lugovoy ◽  
D. Neov ◽  
M. Ceretti

2002 ◽  
Vol 731 ◽  
Author(s):  
Graeme J. Ackland ◽  
Udomsilp Pinsook

AbstractThe martensitic phase transformation from bcc to hcp underlies a number of curious effects, including shape-memory and superelasticity. The distinctive feature is the microscopic reversibility of the transition: at the atomic level, the position of each atom is uniquely related between phases. Moreover, this one-to-one relationship holds not only for the perfect crystal transformation mechanism, but also for the topological defects (such as twin boundaries) which are created in the transformation. Furthermore, for shape memory effect the microscopic relationship must be preserved by the deformation mechanism active in the material. In this paper, we examine the microscopic phenomena which allow these relationships to hold, and the consequences for shape-memory alloy design.


2018 ◽  
Vol 134 (3) ◽  
pp. 811-814
Author(s):  
T. Grabec ◽  
K. Zoubková ◽  
P. Stoklasová ◽  
M. Ševčík ◽  
P. Sedlák ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document