In situ TEM study of irradiation-induced transformation in TiNi shape memory alloys

2003 ◽  
Vol 792 ◽  
Author(s):  
X. T. Zu ◽  
F.R. Wan ◽  
S. Zhu ◽  
L. M. Wang

ABSTRACTTiNi shape memory alloy (SMA) has potential applications for nuclear reactors and its phase stability under irradiation is becoming an important topic. Some irradiation-induced diffusion-dependent phase transformations, such as amorphization, have been reported before. In the present work, the behavior of diffusion-independent phase transformation in TiNi SMA was studied by electron irradiation at room temperature. The effect of irradiation on the martensitic transformation of TiNi shape memory alloys was studied by Transmission Electron Microscopy (TEM) with in-situ observation and differential scanning calorimeter (DSC). The results of TEM and DSC measurements show that the microstructure of samples is R phase at room temperature. Electron irradiations were carried out using several different TEM with accelerating voltage of 200 kV, 300 kV, 400 kV and 1000 kV. Also the accelerating voltage in the same TEM was changed to investigate the critical voltage for the effect of irradiation on phase transformation. It was found that a phase transformation occurred under electron irradiation above 320 kV, but never appeared at 300 kV or lower accelerating voltage. Such phase transformation took place in a few seconds of irradiation and was independent of atom diffusion. The mechanism of Electron-irradiation-induced the martensitic transformation due to displacements of atoms from their lattice sites produced by the accelerated electrons.

2017 ◽  
Vol 3 (4) ◽  
pp. 347-360 ◽  
Author(s):  
J. Burow ◽  
J. Frenzel ◽  
C. Somsen ◽  
E. Prokofiev ◽  
R. Valiev ◽  
...  

Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 345 ◽  
Author(s):  
Weiya Li ◽  
Chunwang Zhao

The microstructure and martensitic transformation behavior of Ni50−xTi50Lax (x = 0.1, 0.3, 0.5, 0.7) shape memory alloys were investigated experimentally. Results show that the microstructure of Ni50−xTi50Lax alloys consists of a near-equiatomic TiNi matrix, LaNi precipitates, and Ti2Ni precipitates. With increasing La content, the amounts of LaNi and Ti2Ni precipitates demonstrate an increasing tendency. The martensitic transformation start temperature increases gradually with increasing La content. The Ni content is mainly responsible for the change in martensite transformation behavior in Ni50−xTi50Lax alloys.


2007 ◽  
Vol 537-538 ◽  
pp. 129-136 ◽  
Author(s):  
Marton Benke ◽  
Valéria Mertinger ◽  
E. Nagy ◽  
Jan Van Humbeeck

The ageing phenomena and its effect on the thermoelastic martensitic transformation was investigated in three Cu-base SMAs. The transformation temperatures shifted to higher temperatures due to aging in the beta-phase. To increase the alloy’s ductility, a definite amount of Mn (4 wt%) and Fe (2 wt%) were added to the ternary alloy. The thermoelastic martensitic transformation was found in the not-aged samples of the CuAlNiMn and CuAlNiMnFe alloys. This transformation was destroyed due to ageing heat treatments by a fairly unknown exothermic process. The thermoelastic martensitic transformation appeared again in the aged CuAlNiMn and CuAlNiMnFe samples after keeping them on room temperature for a few months. This phenomena was investigated by DSC, SEM, TEM, and XRD.


2015 ◽  
Vol 833 ◽  
pp. 67-70
Author(s):  
Shui Yuan Yang ◽  
Cui Ping Wang ◽  
Yu Su ◽  
Xing Jun Liu

The evolutions of microstructure and phase transformation behavior of Cu-Al-Fe-Nb/Ta high-temperature shape memory alloys under the quenched and aged states were investigated in this study, including Cu-10wt.% Al-6wt.% Fe, Cu-10wt.% Al-4wt.% Fe-2wt.% Nb and Cu-10wt.% Al-4wt.% Fe-2wt.% Ta three types alloys. The obtained results show that after quenching, Cu-10wt.% Al-6wt.% Fe alloy exhibits two-phase microstructure of β′1 martensite + Fe (Al,Cu) phase; Cu-10wt.% Al-4wt.% Fe-2wt.% Nb alloy also has two-phase microstructure of (β′1 + γ′1 martensites) + Nb (Fe,Al,Cu)2 phase; Cu-10wt.% Al-4wt.% Fe-2wt.% Ta alloy is consisted of three-phase of (β′1 + γ′1 martensites) + Fe (Al,Cu,Ta) + Ta2(Al,Cu,Fe)3 phases. However, α (Cu) phase precipitates after aging for three alloys; and Fe (Al,Cu,Nb) phase is also present in Cu-10wt.% Al-4wt.% Fe-2wt.% Nb alloy. All the studied alloys exhibit complicated martensitic transformation behaviors resulted from the existence of two types martensites (β′1 and γ′1).


Author(s):  
Yajun You ◽  
Xin Guo

Abstract The phase transformation ratchetting of Shape Memory Alloys (SMAs) at incomplete phase transformation cyclic loading is experimentally and theoretically investigated. To this end, two different kinds of incomplete phase transformation cyclic loading tests on NiTi wires are performed, i.e. incomplete transformation cyclic loads are respectively applied at the stages of forward martensite transformation and reverse martensite transformation. When the cyclic load of incomplete transformation is applied in the positive martensitic transformation stage, a novel phenomenon is discovered: although there is no greater stress to drive the anstenite turn to martensite, the SMAs can still gradually undergo martensite transformation and accumulation until martensite reaches saturation. The hysteretic behavior finally reaches a shakedown state where the strain-stress curve no longer changes with the number of cycles. When the cyclic load of incomplete transformation is applied in the reverse martensitic transformation stage, a similar phenomenon is obtatined. According to the analysis of the temperature evolution during the deformation process of the SMAs, combined with the relationship between the phase transformation yield stress and the temperature of SMAs, the experimental results are reasonably explained. This research is of great significance for a more comprehensive grasp of the mechanical behavior of SMAs.


Sign in / Sign up

Export Citation Format

Share Document