Strategy for performance enhancement of Cd1-XZnXTe/CdS core/shell quantum dot sensitized solar cells through band adjustment

2020 ◽  
Vol 826 ◽  
pp. 154050
Author(s):  
Wangwei Lu ◽  
Bin Song ◽  
Huazheng Li ◽  
Jing Zhou ◽  
Weixia Dong ◽  
...  
2019 ◽  
Vol 12 (01) ◽  
pp. 1850090
Author(s):  
Zhou Liu ◽  
Zhuoyin Peng ◽  
Jianlin Chen ◽  
Wei Li ◽  
Jian Chen ◽  
...  

Cu2GeSe3 quantum dot is introduced to instead of non-toxic CuInSe2 as a sensitizer for solar cells, which is employed to enhance the photovoltaic performance. Cu2GeSe3 quantum dots with various sizes are prepared by thermolysis process, which are employed for the fabrication of quantum dot-sensitized solar cells (QDSSC) according to assembly linking process. The optical absorption properties of the Cu2GeSe3 quantum dot-sensitized photo-electrodes have been obviously enhanced by the size optimization of quantum dots, which are better than that of CuInSe2-based photo-electrodes. Due to the balance on the deposition quantity and charge transfer property of the quantum dots, 3.9[Formula: see text]nm-sized Cu2GeSe3 QDSSC exhibits the highest current density value and incident photon conversion efficiency response, which result in a higher photovoltaic conversion efficiency than that of CuInSe2 QDSSC. The modulation of Cu2GeSe3 QDs will further improve the performance of photovoltaic devices.


2020 ◽  
Vol 2 (1) ◽  
pp. 286-295 ◽  
Author(s):  
M. Kamruzzaman

ZnO nanorod (NR) based inorganic quantum dot sensitized solar cells have gained tremendous attention for use in next generation solar cells.


2019 ◽  
Vol 21 (7) ◽  
pp. 3970-3975 ◽  
Author(s):  
Shixin Chen ◽  
Yinglin Wang ◽  
Shuang Lu ◽  
Yichun Liu ◽  
Xintong Zhang

We employed a sol–gel method to prepare a CdS interlayer (CdS-SG) with a stoichiometric ratio and then fabricated QDSCs.


2016 ◽  
Vol 4 (19) ◽  
pp. 7214-7221 ◽  
Author(s):  
Shuang Jiao ◽  
Jin Wang ◽  
Qing Shen ◽  
Yan Li ◽  
Xinhua Zhong

A CdS passivation layer was introduced to a PbS QD surface to synthesize PbS/CdS core/shell QDs through an ion exchange procedure, achieving a record PCE of 7.19% for PbS-based liquid-junction quantum dot sensitized solar cells.


Sign in / Sign up

Export Citation Format

Share Document