Construction of hexagonal nickel-cobalt oxide nanosheets on metal-organic frameworks based on MXene interlayer ion effect for hybrid supercapacitors

2021 ◽  
Vol 870 ◽  
pp. 159466
Author(s):  
Jiaheng Wang ◽  
Jiaxu Gong ◽  
Huan Zhang ◽  
Linlin Lv ◽  
Yuxing Liu ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3918
Author(s):  
Anna Dymerska ◽  
Wojciech Kukułka ◽  
Marcin Biegun ◽  
Ewa Mijowska

The renewable energy technologies require electrocatalysts for reactions, such as the oxygen and/or hydrogen evolution reaction (OER/HER). They are complex electrochemical reactions that take place through the direct transfer of electrons. However, mostly they have high over-potentials and slow kinetics, that is why they require electrocatalysts to lower the over-potential of the reactions and enhance the reaction rate. The commercially used catalysts (e.g., ruthenium nanoparticles—Ru, iridium nanoparticles—Ir, and their oxides: RuO2, IrO2, platinum—Pt) contain metals that have poor stability, and are not economically worthwhile for widespread application. Here, we propose the spinel structure of nickel-cobalt oxide (NiCo2O4) fabricated to serve as electrocatalyst for OER. These structures were obtained by a facile two-step method: (1) One-pot solvothermal reaction and subsequently (2) pyrolysis or carbonization, respectively. This material exhibits novel rod-like morphology formed by tiny spheres. The presence of transition metal particles such as Co and Ni due to their conductivity and electron configurations provides a great number of active sites, which brings superior electrochemical performance in oxygen evolution and good stability in long-term tests. Therefore, it is believed that we propose interesting low-cost material that can act as a super stable catalyst in OER.


2021 ◽  
Author(s):  
Bahareh ameri ◽  
Akbar Mohammadi Zardkhoshoui ◽  
Saied Saeed Hosseiny Davarani

Metal-organic frameworks (MOFs) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein,...


2021 ◽  
Vol 4 (2) ◽  
pp. 2143-2152 ◽  
Author(s):  
Devesh K. Pathak ◽  
Anjali Chaudhary ◽  
Manushree Tanwar ◽  
Uttam K. Goutam ◽  
Puspen Mondal ◽  
...  

2016 ◽  
Vol 3 (10) ◽  
pp. 1517-1517 ◽  
Author(s):  
Dowon Bae ◽  
Bastian Mei ◽  
Rasmus Frydendal ◽  
Thomas Pedersen ◽  
Brian Seger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document