State and effect of oxygen on high entropy alloys prepared by powder metallurgy

2022 ◽  
Vol 891 ◽  
pp. 161963
Author(s):  
Jingzhi He ◽  
Yating Qiao ◽  
Ruixin Wang ◽  
Yu Tang ◽  
Shun Li ◽  
...  
Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 540
Author(s):  
Mohamed Ali Hassan ◽  
Hossam M. Yehia ◽  
Ahmed S. A. Mohamed ◽  
Ahmed Essa El-Nikhaily ◽  
Omayma A. Elkady

To improve the AlCoCrFeNi high entropy alloys’ (HEAs’) toughness, it was coated with different amounts of Cu then fabricated by the powder metallurgy technique. Mechanical alloying of equiatomic AlCoCrFeNi HEAs for 25 h preceded the coating process. The established powder samples were sintered at different temperatures in a vacuum furnace. The HEAs samples sintered at 950˚C exhibit the highest relative density. The AlCoCrFeNi HEAs model sample was not successfully produced by the applied method due to the low melting point of aluminum. The Al element’s problem disappeared due to encapsulating it with a copper layer during the coating process. Because the atomic radius of the copper metal (0.1278 nm) is less than the atomic radius of the aluminum metal (0.1431 nm) and nearly equal to the rest of the other elements (Co, Cr, Fe, and Ni), the crystal size powder and fabricated samples decreased by increasing the content of the Cu wt%. On the other hand, the lattice strain increased. The microstructure revealed that the complete diffusion between the different elements to form high entropy alloy material was not achieved. A dramatic decrease in the produced samples’ hardness was observed where it decreased from 403 HV at 5 wt% Cu to 191 HV at 20 wt% Cu. On the contrary, the compressive strength increased from 400.034 MPa at 5 wt% Cu to 599.527 MPa at 15 wt% Cu with a 49.86% increment. This increment in the compressive strength may be due to precipitating the copper metal on the particles’ surface in the nano-size, reducing the dislocations’ motion, increasing the stiffness of produced materials. The formability and toughness of the fabricated materials improved by increasing the copper’s content. The thermal expansion has increased gradually by increasing the Cu wt%.


Author(s):  
Marcello Cabibbo ◽  
Filip Průša ◽  
Alexandra Šenková ◽  
Andrea Školáková ◽  
Vojtěch Kučera ◽  
...  

High-entropy alloys are known to show exceptionally high mechanical properties, both compression and tensile strength, and unique physical properties, such as their phase stability. These quite unusual properties are primarily due to the microstructure generated by mechanical alloying processes, such as conventional induction arc melting, powder metallurgy, or mechanical alloying. In the present study, an equiatomic CoCrFeNiNb high-entropy alloy was prepared by a sequence of conventional induction melting, powder metallurgy, and compaction via spark plasma sintering. The high-entropy alloys showed uniform sub-micrometer grain microstructure consisted by a mixture of an fcc solid solution strengthened by a hcp Laves phase and a third intergranular oxide phase. The as-cast high-entropy alloys showed an ultimate compression strength (UCS) of ∼1400 MPa, which after sintering and compaction at 1273 K increased up to ∼2400 MPa. Extensive transmission electron microscopy quantitative analyses were carried out to model the UCS. A quite good agreement between the microstructure-strengthening model and the experimental UCS was found.


2020 ◽  
Vol 63 (4) ◽  
pp. 227-236
Author(s):  
José M. Torralba ◽  
Paula Alvaredo ◽  
Andrea García-Junceda

2019 ◽  
Vol 62 (2) ◽  
pp. 84-114 ◽  
Author(s):  
J. M. Torralba ◽  
P. Alvaredo ◽  
Andrea García-Junceda

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 578 ◽  
Author(s):  
Igor Moravcik ◽  
Stepan Gamanov ◽  
Larissa Moravcikova-Gouvea ◽  
Zuzana Kovacova ◽  
Michael Kitzmantel ◽  
...  

The focus of this study is the evaluation of the influence of Ti concentration on the tensile properties of powder metallurgy high entropy alloys. Three Ni1.5Co1.5CrFeTiX alloys with X = 0.3; 0.5 and 0.7 were produced by mechanical alloying and spark plasma sintering. Additional annealing heat treatment at 1100 °C was utilized to obtain homogenous single-phase face centered cubic (FCC) microstructures, with minor oxide inclusions. The results show that Ti increases the strength of the alloys by increasing the average atomic size misfit i.e., solid solution strengthening. An excellent combination of mechanical properties can be obtained by the proposed method. For instance, annealed Ni1,5Co1,5CrFeTi0.7 alloy possessed the ultimate tensile strength as high as ~1600 MPa at a tensile ductility of ~9%, despite the oxide contamination. The presented results may serve as a guideline for future alloy design of novel, inclusion-tolerant materials for sustainable metallurgy.


Sign in / Sign up

Export Citation Format

Share Document