A Study on the Phase Formation and Magnetic Properties of FeNiCoCuM (M = Mo, Nb) High-Entropy Alloys Processed Through Powder Metallurgy

2021 ◽  
Vol 52 (3) ◽  
pp. 1044-1058
Author(s):  
P. Martin ◽  
C. Salvo ◽  
E. Pio ◽  
G. Neves ◽  
Henry A. Colorado ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1907
Author(s):  
Jiaming Li ◽  
Jianliang Zuo ◽  
Hongya Yu

The microstructure, phase formation, thermal stability and soft magnetic properties of melt-spun high entropy alloys (HEAs) Fe27Co27Ni27Si10−xB9Lax with various La substitutions for Si (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) were investigated in this work. The Fe27Co27Ni27Si10−xB9La0.6 alloy shows superior soft magnetic properties with low coercivity Hc of ~7.1 A/m and high saturation magnetization Bs of 1.07 T. The content of La has an important effect on the primary crystallization temperature (Tx1) and the secondary crystallization temperature (Tx2) of the alloys. After annealing at relatively low temperature, the saturation magnetization of the alloy increases and the microstructure with a small amount of body-centered cubic (BCC) phase embedded in amorphous matrix is observed. Increasing the annealing temperature reduces the magnetization due to the transformation of BCC phase into face-centered cubic (FCC) phase.


2021 ◽  
pp. 129965
Author(s):  
Zhong Li ◽  
Jianing Qi ◽  
Zhuangzhuang Li ◽  
Hongxia Li ◽  
Hui Xu ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 540
Author(s):  
Mohamed Ali Hassan ◽  
Hossam M. Yehia ◽  
Ahmed S. A. Mohamed ◽  
Ahmed Essa El-Nikhaily ◽  
Omayma A. Elkady

To improve the AlCoCrFeNi high entropy alloys’ (HEAs’) toughness, it was coated with different amounts of Cu then fabricated by the powder metallurgy technique. Mechanical alloying of equiatomic AlCoCrFeNi HEAs for 25 h preceded the coating process. The established powder samples were sintered at different temperatures in a vacuum furnace. The HEAs samples sintered at 950˚C exhibit the highest relative density. The AlCoCrFeNi HEAs model sample was not successfully produced by the applied method due to the low melting point of aluminum. The Al element’s problem disappeared due to encapsulating it with a copper layer during the coating process. Because the atomic radius of the copper metal (0.1278 nm) is less than the atomic radius of the aluminum metal (0.1431 nm) and nearly equal to the rest of the other elements (Co, Cr, Fe, and Ni), the crystal size powder and fabricated samples decreased by increasing the content of the Cu wt%. On the other hand, the lattice strain increased. The microstructure revealed that the complete diffusion between the different elements to form high entropy alloy material was not achieved. A dramatic decrease in the produced samples’ hardness was observed where it decreased from 403 HV at 5 wt% Cu to 191 HV at 20 wt% Cu. On the contrary, the compressive strength increased from 400.034 MPa at 5 wt% Cu to 599.527 MPa at 15 wt% Cu with a 49.86% increment. This increment in the compressive strength may be due to precipitating the copper metal on the particles’ surface in the nano-size, reducing the dislocations’ motion, increasing the stiffness of produced materials. The formability and toughness of the fabricated materials improved by increasing the copper’s content. The thermal expansion has increased gradually by increasing the Cu wt%.


Author(s):  
Vinay Kumar Soni ◽  
S Sanyal ◽  
K Raja Rao ◽  
Sudip K Sinha

The formation of single phase solid solution in High Entropy Alloys (HEAs) is essential for the properties of the alloys therefore, numerous approach were proposed by many researchers to predict the stability of single phase solid solution in High Entropy Alloy. The present review examines some of the recent developments while using computational intelligence techniques such as parametric approach, CALPHAD, Machine Learning etc. for prediction of various phase formation in multicomponent high entropy alloys. A detail study of this data-driven approaches pertaining to the understanding of structural and phase formation behaviour of a new class of compositionally complex alloys is done in the present investigation. The advantages and drawbacks of the various computational are also discussed. Finally, this review aims at understanding several computational modeling tools complying the thermodynamic criteria for phase formation of novel HEAs which could possibly deliver superior mechanical properties keeping an aim at advanced engineering applications.


JOM ◽  
2017 ◽  
Vol 69 (11) ◽  
pp. 2113-2124 ◽  
Author(s):  
K. Guruvidyathri ◽  
K. C. Hari Kumar ◽  
J. W. Yeh ◽  
B. S. Murty

2017 ◽  
Vol 24 (4) ◽  
pp. 358-365 ◽  
Author(s):  
Wan-li Zhao ◽  
Ding-hao Miao ◽  
Yong Zhang ◽  
Zhan-bing He

Entropy ◽  
2015 ◽  
Vol 17 (4) ◽  
pp. 2355-2366 ◽  
Author(s):  
Yiping Lu ◽  
Yong Dong ◽  
Li Jiang ◽  
Tongmin Wang ◽  
Tingju Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document