Photodeposition of Alloyed Au-Pt Nanoparticles on TiO2 for the Enhanced Catalytic Oxidation of HCHO at Room Temperature

2021 ◽  
pp. 163140
Author(s):  
Yuanbo Song ◽  
Hongyun Du ◽  
Haocheng Wu ◽  
Liyi Shi ◽  
Dongqi Yu ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Xiaoya Gao ◽  
Qian Guo ◽  
Yuan Zhou ◽  
Dedong He ◽  
Yongming Luo

In this work, a series of natural mordenite-supported platinum (Pt) catalysts were prepared by a facile two-step method, namely, treatment of natural mordenite and then the loading of Pt nanoparticles. The acid-alkali-treated natural mordenite-supported Pt samples (1% Pt/MORn-H-OH) exhibited the highly enhanced catalytic oxidation activity of formaldehyde (HCHO) at room temperature. XRD results showed that the crystalline phase of the mordenite did not change significantly in 1% Pt/MORn-H-OH catalyst. However, the acid-alkali treatment endowed the Pt particles excellent dispersion with the smallest diameter of 2.8 nm in a high loading content, which contributed to the optimal catalytic activity of 1% Pt/MORn-H-OH.


2020 ◽  
Vol 3 (3) ◽  
pp. 2614-2624 ◽  
Author(s):  
Wenjing Bao ◽  
Hongxia Chen ◽  
Hao Wang ◽  
Runduo Zhang ◽  
Ying Wei ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Gan ◽  
Jingxiu Yang ◽  
David Morris ◽  
Xuefeng Chu ◽  
Peng Zhang ◽  
...  

AbstractActivation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the concept of increased electron donors induced by nitrogen vacancy is adopted to propose an efficient strategy to develop highly active and stable catalysts for molecular O2 activation. Carbon nitride with nitrogen vacancies is prepared to serve as a support as well as electron sink to construct a synergistic catalyst with Pt nanoparticles. Extensive characterizations combined with the first-principles calculations reveal that nitrogen vacancies with excess electrons could effectively stabilize metallic Pt nanoparticles by strong p-d coupling. The Pt atoms and the dangling carbon atoms surround the vacancy can synergistically donate electrons to the antibonding orbital of the adsorbed O2. This synergistic catalyst shows great enhancement of catalytic performance and durability in toluene oxidation. The introduction of electron-rich non-oxide substrate is an innovative strategy to develop active Pt-based oxidation catalysts, which could be conceivably extended to a variety of metal-based catalysts for catalytic oxidation.


2016 ◽  
Vol 6 (7) ◽  
pp. 2289-2295 ◽  
Author(s):  
Yaobin Li ◽  
Changbin Zhang ◽  
Hong He ◽  
Jianghao Zhang ◽  
Min Chen

We previously observed that sodium (Na) addition had a dramatic promotion effect on Pd/TiO2 catalysts for formaldehyde (HCHO) oxidation.


2016 ◽  
Vol 09 (06) ◽  
pp. 1642009 ◽  
Author(s):  
Jing Zhou ◽  
Yong Zhao ◽  
Lifan Qin ◽  
Chen Zeng ◽  
Wei Xiao

Uniform CoSn(OH)6 hollow nanoboxes and the derivative with Pt loading (Pt/CoSn(OH)6) were herein synthesized and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). SEM and TEM analyses showed that CoSn(OH)6 possessed mesoporous hollow structure and Pt nanoparticles with size of 2–8[Formula: see text]nm were uniformly dispersed on the surface of CoSn(OH)6 nanoboxes. The performances of the catalysts for the formaldehyde (HCHO) removal at room temperature were evaluated. These Pt/CoSn(OH)6 catalysts exhibited a remarkable catalytic activity as well as stability for room-temperature oxidative decomposition of gaseous HCHO, while the corresponding CoSn(OH)6 only showed adsorption. The synergetic effect between the highly dispersed Pt nanoparticles and the CoSn(OH)6 nanoboxes with mesoporous hollow structure, a large surface area and abundant surface hydroxyl groups is considered to be the main reason for the observed high catalytic activity of Pt/CoSn(OH)6.


Author(s):  
Alexandr Yu. Stakheev ◽  
Dmitry A. Bokarev ◽  
Igor P. Prosvirin ◽  
Valerii I. Bukhtiyarov

2015 ◽  
Vol 1 (11) ◽  
pp. e1500462 ◽  
Author(s):  
Dehui Deng ◽  
Xiaoqi Chen ◽  
Liang Yu ◽  
Xing Wu ◽  
Qingfei Liu ◽  
...  

Coordinatively unsaturated (CUS) iron sites are highly active in catalytic oxidation reactions; however, maintaining the CUS structure of iron during heterogeneous catalytic reactions is a great challenge. Here, we report a strategy to stabilize single-atom CUS iron sites by embedding highly dispersed FeN4 centers in the graphene matrix. The atomic structure of FeN4 centers in graphene was revealed for the first time by combining high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy with low-temperature scanning tunneling microscopy. These confined single-atom iron sites exhibit high performance in the direct catalytic oxidation of benzene to phenol at room temperature, with a conversion of 23.4% and a yield of 18.7%, and can even proceed efficiently at 0°C with a phenol yield of 8.3% after 24 hours. Both experimental measurements and density functional theory calculations indicate that the formation of the Fe═O intermediate structure is a key step to promoting the conversion of benzene to phenol. These findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis and electrocatalysis.


Sign in / Sign up

Export Citation Format

Share Document