P3-439: Donepezil promotes the proliferation of neural stem cells in the dentate gyrus of aged mice

2010 ◽  
Vol 6 ◽  
pp. S582-S582
Author(s):  
Tatsuhiro Hisatsune
Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Auston Eckert ◽  
Milton H Hamblin ◽  
Jean-Pyo Lee

Background: Presently, tissue plasminogen activator (tPA) is the sole FDA-approved antithrombotic treatment available for stroke. However, tPA’s harmful side effects within the central nervous system can exacerbate blood-brain barrier (BBB) damage and increase mortality. Patients should receive tPA less than 4.5 hours post-stroke. Although age alone is not an impediment for tPA treatment, the harmful effects of delayed tPA (>4.5h), particularly on aged stroke animals, have not been well studied. We reported that intracranial transplantation of neural stem cells (hNSCs) ameliorates BBB damage caused by ischemic stroke. In this study, we examined the combined effects of minocycline (a neuroprotective and anti-inflammatory drug) and hNSC transplantation on the mortality of delayed tPA-treated aged mice within 48h post-stroke. Methods and Results: We utilized the middle cerebral artery occlusion stroke mouse model to induce focal cerebral ischemia followed by reperfusion (MCAO/R). 6h post-MCAO, we administered tPA intravenously. Minocycline was administered intraperitoneally at various time points prior to tPA injection. One day post-stroke, we injected hNSCs intracranially. Previously, we reported that hNSCs (both human and mouse) transplanted into the brain 24h post-stroke rapidly improve neurological outcome in young-adult mice (4-5mo). In our current study, tPA administered within 4.5h did not increase mortality in either young-adult or aged mice. However, we found delayed tPA treatment (6h post-stroke) significantly increased the mortality of aged mice (13-18 mo) but not in young-adult mice. Here, we report that by combining minocycline prior to tPA significantly reduced mortality. Furthermore, transplanting hNSCs in minocycline-treated mice further ameliorated the pathophysiology caused by delayed tPA. Conclusions: Our findings implicate that administering the anti-apototic and anti-inflammatory drug prior to tPA injection, and then post-treating with multipotent neuroprotective hNSCs might expand the time window of tPA and reduce reperfusion injury.


Neuron ◽  
2013 ◽  
Vol 78 (4) ◽  
pp. 658-672 ◽  
Author(s):  
Guangnan Li ◽  
Li Fang ◽  
Gloria Fernández ◽  
Samuel J. Pleasure

2012 ◽  
Vol 31 (2) ◽  
pp. 307-314 ◽  
Author(s):  
YUKI AKAZAWA ◽  
TAKAMASA KITAMURA ◽  
YURI FUJIHARA ◽  
YOSHITAKA YOSHIMURA ◽  
MASATO MITOME ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Branden R Nelson ◽  
Rebecca D Hodge ◽  
Ray AM Daza ◽  
Prem Prakash Tripathi ◽  
Sebastian J Arnold ◽  
...  

The hippocampal dentate gyrus (DG) is a unique brain region maintaining neural stem cells (NCSs) and neurogenesis into adulthood. We used multiphoton imaging to visualize genetically defined progenitor subpopulations in live slices across key stages of mouse DG development, testing decades old static models of DG formation with molecular identification, genetic-lineage tracing, and mutant analyses. We found novel progenitor migrations, timings, dynamic cell-cell interactions, signaling activities, and routes underlie mosaic DG formation. Intermediate progenitors (IPs, Tbr2+) pioneered migrations, supporting and guiding later emigrating NSCs (Sox9+) through multiple transient zones prior to converging at the nascent outer adult niche in a dynamic settling process, generating all prenatal and postnatal granule neurons in defined spatiotemporal order. IPs (Dll1+) extensively targeted contacts to mitotic NSCs (Notch active), revealing a substrate for cell-cell contact support during migrations, a developmental feature maintained in adults. Mouse DG formation shares conserved features of human neocortical expansion.


eNeuro ◽  
2022 ◽  
pp. ENEURO.0271-21.2021
Author(s):  
Michael J. Borrett ◽  
Nareh Tahmasian ◽  
Brendan T. Innes ◽  
Gary D. Bader ◽  
David R. Kaplan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document