scholarly journals P2-097: A comparison of F-18 FDG-PET imaging in differential diagnosis of Alzheimer's disease and dementia with Lewy body disease

2011 ◽  
Vol 7 ◽  
pp. S339-S339
Author(s):  
Eun Hye Jang ◽  
Heeyoung Kim ◽  
Rahyeong Juh
2013 ◽  
Vol 27 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Paolo Caffarra ◽  
Simona Gardini ◽  
Francesca Dieci ◽  
Sandra Copelli ◽  
Laura Maset ◽  
...  

The differential diagnosis across different variants of degenerative diseases is sometimes controversial. This study aimed to validate a qualitative scoring method for the pentagons copy test (QSPT) of Mini-Mental State Examination (MMSE) based on the assessment of different parameters of the pentagons drawing, such as number of angles, distance/intersection, closure/opening, rotation, closing-in, and to verify its efficacy to differentiate dementia with Lewy Body (DLB) from Alzheimer's disease (AD). We established the reliability of the qualitative scoring method through the inter-raters and intra-subjects analysis. QSPT was then applied to forty-six AD and forty-six DLB patients, using two phases statistical approach, standard and artificial neural network respectively. DLB patients had significant lower total score in the copy of pentagons and number of angles, distance/intersection, closure/opening, rotation compared to AD. However the logistic regression did not allow to establish any suitable modeling, whereas using Auto-Contractive Map (Auto-CM) the DLB was more strongly associated with low scores in some qualitative parameters of pentagon copying, i.e. number of angles and opening/closure and, for the remaining subitems of the MMSE, in naming, repetition and written comprehension, and for demographic variables of gender (male) and education (6–13 years). Twist system modeling showed that the QSPT had a good sensitivity (70.29%) and specificity (78.67%) (ROC-AUC 0.74). The proposed qualitative method of assessment of pentagons copying used in combination with non-linear analysis, showed to be consistent and effective in the differential diagnosis between Lewy Body and Alzheimer’s dementia.


2021 ◽  
Vol 79 (4) ◽  
pp. 1471-1487
Author(s):  
Yang Hyun Lee ◽  
Seun Jeon ◽  
Han Soo Yoo ◽  
Seok Jong Chung ◽  
Jin Ho Jung ◽  
...  

Background: The relationship among amyloid-β (Aβ) deposition on amyloid positron emission tomography (PET), cortical metabolism on 18F-fluoro-2-deoxy-D-glucose (FDG)-PET, and clinical diagnosis has not been elucidated for both Alzheimer’s disease (AD) and Lewy body disease (LBD). Objective: We investigated the patterns of cerebral metabolism according to the presence of AD and LBD. Methods: A total of 178 subjects were enrolled including 42 pure AD, 32 pure LBD, 34 Lewy body variant AD (LBVAD), 15 LBD with amyloid, 26 AD with dementia with Lewy bodies (DLB), and 29 control subjects. Pure AD, LBVAD, and AD with DLB groups had biomarker-supported diagnoses of typical AD, while pure LBD, LBD with amyloid, and AD with DLB groups had biomarker-supported diagnoses of typical LBD. Typical AD and LBD with amyloid showed amyloid-positivity on 18F-florbetaben (FBB) PET, while typical LBD and LBVAD had abnormalities on dopamine transporter PET. We measured regional patterns of glucose metabolism using FDG-PET and evaluated their relationship with AD and LBD. Results: Compared with control group, typical AD and typical LBD commonly exhibited hypometabolism in the bilateral temporo-parietal junction, precuneus, and posterior cingulate cortex. Typical AD showed an additional hypometabolism in the entorhinal cortex, while patients with dopamine transporter abnormality-supported diagnosis of LBD showed diffuse hypometabolism that spared the sensory-motor cortex. Although the diffuse hypometabolism in LBD also involved the occipital cortex, prominent occipital hypometabolism was only seen in LBD with amyloid group. Conclusion: Combining clinical and metabolic evaluations may enhance the diagnostic accuracy of AD, LBD, and mixed disease cases.


2018 ◽  
Vol 15 (13) ◽  
pp. 1267-1275 ◽  
Author(s):  
F.E. Reesink ◽  
D. Vállez García ◽  
C.A. Sánchez-Catasús ◽  
D.E. Peretti ◽  
A.T. Willemsen ◽  
...  

Background: We describe the phenomenon of crossed cerebellar diaschisis (CCD) in four subjects diagnosed with Alzheimer’s disease (AD) according to the National Institute on Aging - Alzheimer Association (NIA-AA) criteria, in combination with 18F-FDG PET and 11C-PiB PET imaging. Methods: 18F-FDG PET showed a pattern of cerebral metabolism with relative decrease most prominent in the frontal-parietal cortex of the left hemisphere and crossed hypometabolism of the right cerebellum. 11C-PiB PET showed symmetrical amyloid accumulation, but a lower relative tracer delivery (a surrogate of relative cerebral blood flow) in the left hemisphere. CCD is the phenomenon of unilateral cerebellar hypometabolism as a remote effect of supratentorial dysfunction of the brain in the contralateral hemisphere. The mechanism implies the involvement of the cortico-ponto-cerebellar fibers. The pathophysiology is thought to have a functional or reversible basis but can also reflect in secondary morphologic change. CCD is a well-recognized phenomenon, since the development of new imaging techniques, although scarcely described in neurodegenerative dementias. Results: To our knowledge this is the first report describing CCD in AD subjects with documentation of both 18F-FDG PET and 11C-PiB PET imaging. CCD in our subjects was explained on a functional basis due to neurodegenerative pathology in the left hemisphere. There was no structural lesion and the symmetric amyloid accumulation did not correspond with the unilateral metabolic impairment. Conclusion: This suggests that CCD might be caused by non-amyloid neurodegeneration. The pathophysiological mechanism, clinical relevance and therapeutic implications of CCD and the role of the cerebellum in AD need further investigation.


2021 ◽  
Author(s):  
Kyoungwon Baik ◽  
Jin‐Ju Yang ◽  
Jin Ho Jung ◽  
Yang Hyun Lee ◽  
Seok Jong Chung ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
János Bencze ◽  
Máté Szarka ◽  
Viktor Bencs ◽  
Renáta Nóra Szabó ◽  
Máté Smajda ◽  
...  

AbstractAlzheimer’s disease (AD) and neocortical Lewy body disease (LBD) are the most common neurodegenerative dementias, with no available curative treatment. Elucidating pathomechanism and identifying novel therapeutic targets are of paramount importance. Lemur tyrosine kinase 2 (LMTK2) is involved in several physiological and pathological cellular processes. Herewith a neuropathological characterization is presented in AD and neocortical LBD samples using chromogenic and fluorescent LMTK2 immunohistochemistry on post-mortem brain tissues and compared them to age-matched controls (CNTs). LMTK2 immunopositivity was limited to the neuronal cytoplasm. Neurons, including tau-positive tangle-bearing ones, showed decreased chromogenic and immunofluorescent labelling in AD in every cortical layer compared to CNT and neocortical LBD. Digital image analysis was performed to measure the average immunopositivity of groups. Mean grey values were calculated for each group after measuring the grey scale LMTK2 signal intensity of each individual neuron. There was significant difference between the mean grey values of CNT vs. AD and neocortical LBD vs. AD. The moderate decrease in neocortical LBD suggests the effect of coexisting AD pathology. We provide neuropathological evidence on decreased neuronal LMTK2 immunolabelling in AD, with implications for pathogenesis.


2006 ◽  
Vol 14 (7S_Part_30) ◽  
pp. P1564-P1565
Author(s):  
Charles B. Malpas ◽  
Sarah Lee ◽  
Kirrily Rogers ◽  
David G. Darby ◽  
Michele Veldsman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document