[P3-355]: WHITE MATTER HYPERINTENSITIES MODIFY THE RELATIONSHIP BETWEEN HIPPOCAMPAL VOLUME AND VERBAL MEMORY IN OLDER ADULTS WITHOUT DEMENTIA

2017 ◽  
Vol 13 (7S_Part_22) ◽  
pp. P1091-P1092
Author(s):  
Molly E. Zimmerman ◽  
Mindy J. Katz ◽  
Ali Ezzati ◽  
Michael L. Lipton ◽  
Adam M. Brickman ◽  
...  
2015 ◽  
Vol 11 (7S_Part_15) ◽  
pp. P699-P700
Author(s):  
Ali Ezzati ◽  
Mindy J. Katz ◽  
Martin J. Sliwinski ◽  
Adam M. Brickman ◽  
Molly E. Zimmerman ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Youjin Jung ◽  
Raymond P. Viviano ◽  
Sanneke van Rooden ◽  
Jeroen van der Grond ◽  
Serge A.R.B. Rombouts ◽  
...  

Background: White matter hyperintensities (WMH) show a robust relationship with arterial pressure as well as objective and subjective cognitive functioning. In addition, APOE ɛ4 carriership may influence how arterial pressure affects cognitive functioning. Objective: To determine the role of region-specific WMH burden and APOE ɛ4 carriership on the relationship between mean arterial pressure (MAP) and cognitive function as well as subjective cognitive decline (SCD). Methods: The sample consisted of 87 cognitively unimpaired middle-aged to older adults aged 50–85. We measured WMH volume for the whole brain, anterior thalamic radiation (ATR), forceps minor, and superior longitudinal fasciculus (SLF). We examined whether WMH burden mediated the relationship between MAP and cognition (i.e., TMT-A score for processing speed; Stroop performance for executive function) as well as SCD (i.e., Frequency of Forgetting (FoF)), and whether APOE ɛ4 carriership moderated that mediation. Results: WMH burden within SLF mediated the effect of MAP on Stroop performance. Both whole brain and ATR WMH burden mediated the effect of MAP on FoF score. In the MAP–WMH–Stroop relationship, the mediation effect of SLF WMH and the effect of MAP on SLF WMH were significant only in APOE ɛ4 carriers. In the MAP–WMH–FoF relationship, the effect of MAP on whole brain WMH burden was significant only in ɛ4 carriers. Conclusion: WMH burden and APOE genotype explain the link between blood pressure and cognitive function and may enable a more accurate assessment of the effect of high blood pressure on cognitive decline and risk for dementia.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 918-918
Author(s):  
Blake Neyland ◽  
Christina Hugenschmidt ◽  
Samuel Lockhart ◽  
Laura Baker ◽  
Suzanne Craft ◽  
...  

Abstract Brain pathologies are increasingly understood to confer mobility risk, but the malleability of functional brain networks may be a mechanism for mobility reserve. In particular, white matter hyperintensities (WMH) are strongly associated with mobility and alter functional network connectivity. To assess the potential role of brain networks as a mechanism of mobility reserve, 116 participants with MRI from the Brain Networks and Mobility Function (B-NET) were categorized into 4 groups based on median splits of SPPB scores and WMH burden: Expected Healthy (EH: low WMH, SPPB>10, N=45), Expected Impaired (EI: high WMH, SPPB10, N=24), Unexpected Impaired (EI: low WMH, SPPB<10, N=10) and Unexpected Unhealthy (UH: low WMH, SPPB<10, N=37). Functional brain networks were calculated using graph theory methods and white matter hyperintensities were quantified with the Lesion Segmentation Toolbox (LST) in SPM12. Somatomotor cortex community structure (SMC-CS) was similar between UH and EH with both having higher consistency than EI and UI. However, UH displayed a unique increase in second-order connections between the motor cortex and the anterior cingulate. It is possible that this increase in connections is a signal of higher reserve or resilience in UH participants and may indicate a mechanism of compensation in regards to mobility function and advanced WMH burden. These data suggest functional brain networks may be a mechanism for mobility resilience in older adults at mobility risk due to WMH burden.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Daiki Takano ◽  
Takashi Yamazaki ◽  
Tetsuya Maeda ◽  
Yuichi Satoh ◽  
Yasuko Ikeda ◽  
...  

[Introduction] White matter hyperintensities (WMH) are considered manifestation of arteriosclerotic small vessel disease and WMH burden increases risk of ischemic stroke and cognitive decline. There are only a few evidences concerning the relationship between polyunsaturated fatty acids (PUFA) and WMH. The present study was designed to elucidate the association between WMH and PUFA profile including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) in patients with Alzheimer’s disease (AD). [Methods] The present study was based on 119 patients who were diagnosed as having a probable AD according to the NINCDS-ADRDA criteria. Their mean age was 78.3 years old. All subjects underwent neuropsychological evaluation including mini mental state exam (MMSE) and 1.5-Tesla MRI. Fasting blood samples were also collected for the PUFA measurements. We measured the ratio of serum EPA, DHA and AA concentration to the total PUFA concentration. The WMH were evaluated on T2-weight images and classified into periventricular hyperintensity (PVH) and deep white matter hyperintensity (DWMH). The severity of WMH was graded 5 categories. We investigated the relationship between WMH and PUFA profiles. [Results] The EPA ratio correlated negatively with both PVH (rs=-0.2036, p=0.0264) and DWMH grade (rs=-0.3155, p=0.0005). It remained still significant after adjustment for age, sex, statins use, antithrombotics use, mean blood pressure and presence of hypertension (standardized partial regression coefficient(β)=-0.2516, p=0.0122 for PVH, β=-0.3598, p=0.0001 for DWMH). Neither DHA nor AA ratio correlated with DWMH or PVH grade. The EPA ratio but not DHA or AA ratio correlated positively with total MMSE score (rs=0.2310, p=0.0115). [Conclusions] Our data revealed that the serum EPA was protective against WMH as well as cognitive decline in AD patients. Pathophysiology underlying WMH is complex and the possible mechanisms involved in the pathogenesis of WMH encompass incomplete brain ischemia, increased permeability of blood-brain barrier, and inflammation responses. The relationship between serum EPA and WMH can be partly explained by those anti-ischemic and anti-arteriosclerotic effects of EPA.


2013 ◽  
Vol 21 (2) ◽  
pp. 197-213 ◽  
Author(s):  
Kathryn V. Papp ◽  
Richard F. Kaplan ◽  
Beth Springate ◽  
Nicola Moscufo ◽  
Dorothy B. Wakefield ◽  
...  

2013 ◽  
Vol 9 ◽  
pp. P700-P700
Author(s):  
Seon Young Ryu ◽  
Jean-Philippe Coutu ◽  
H. Diana Rosas ◽  
David Salat

Sign in / Sign up

Export Citation Format

Share Document