Detection of boulder using GEM-2 EM system based on three-dimensional inversion algorithm

2021 ◽  
pp. 104516
Author(s):  
Liu Rong ◽  
Shen Xiaowu ◽  
Chen Chunfei ◽  
Liu Jianxin ◽  
Xiao Jianping ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhi Wang ◽  
Sinan Fang

The electromagnetic wave signal from the electromagnetic field source generates induction signals after reaching the target geological body through the underground medium. The time and spatial distribution rules of the artificial or the natural electromagnetic fields are obtained for the exploration of mineral resources of the subsurface and determining the geological structure of the subsurface to solve the geological problems. The goal of electromagnetic data processing is to suppress the noise and improve the signal-to-noise ratio and the inversion of resistivity data. Inversion has always been the focus of research in the field of electromagnetic methods. In this paper, the three-dimensional borehole-surface resistivity method is explored based on the principle of geometric sounding, and the three-dimensional inversion algorithm of the borehole-surface resistivity method in arbitrary surface topography is proposed. The forward simulation and calculation start from the partial differential equation and the boundary conditions of the total potential of the three-dimensional point current source field are satisfied. Then the unstructured tetrahedral grids are used to discretely subdivide the calculation area that can well fit the complex structure of subsurface and undulating surface topography. The accuracy of the numerical solution is low due to the rapid attenuation of the electric field at the point current source and the nearby positions and sharply varying potential gradients. Therefore, the mesh density is defined at the local area, that is, the vicinity of the source electrode and the measuring electrode. The mesh refinement can effectively reduce the influence of the source point and its vicinity and improve the accuracy of the numerical solution. The stiffness matrix is stored with Compressed Row Storage (CSR) format, and the final large linear equations are solved using the Super Symmetric Over Relaxation Preconditioned Conjugate Gradient (SSOR-PCG) method. The quasi-Newton method with limited memory (L_BFGS) is used to optimize the objective function in the inversion calculation, and a double-loop recursive method is used to solve the normal equation obtained at each iteration in order to avoid computing and storing the sensitivity matrix explicitly and reduce the amount of calculation. The comprehensive application of the above methods makes the 3D inversion algorithm efficient, accurate, and stable. The three-dimensional inversion test is performed on the synthetic data of multiple theoretical geoelectric models with topography (a single anomaly model under valley and a single anomaly model under mountain) to verify the effectiveness of the proposed algorithm.


Geophysics ◽  
2010 ◽  
Vol 75 (1) ◽  
pp. L1-L11 ◽  
Author(s):  
Yaoguo Li ◽  
Sarah E. Shearer ◽  
Matthew M. Haney ◽  
Neal Dannemiller

Three-dimensional (3D) inversion of magnetic data to recover a distribution of magnetic susceptibility has been successfully used for mineral exploration during the last decade. However, the unknown direction of magnetization has limited the use of this technique when significant remanence is present. We have developed a comprehensive methodology for solving this problem by examining two classes of approaches and have formulated a suite of methods of practical utility. The first class focuses on estimating total magnetization direction and then incorporating the resultant direction into an inversion algorithm that assumes a known direction. The second class focuses on direct inversion of the amplitude of the magnetic anomaly vector. Amplitude data depend weakly upon magnetization direction and are amenable to direct inversion for the magnitude of magnetization vector in 3D subsurface. Two sets of high-resolution aeromagnetic data acquired for diamond exploration in the Canadian Arctic are used to illustrate the methods’ usefulness.


2003 ◽  
Vol 40 (10) ◽  
pp. 1307-1320 ◽  
Author(s):  
B Nitescu ◽  
A R Cruden ◽  
R C Bailey

The Moho undulations beneath the western part of the Archean Superior Province have been investigated with a three-dimensional gravity inversion algorithm for a single interface of constant density contrast. Inversion of the complete gravity data set produces unreal effects in the solution due to the ambiguity in the possible sources of some crustal gravity anomalies. To avoid these effects a censored gravity data set was used instead. The inversion results are consistent with reflection and refraction seismic data from the region and, therefore, provide a basis for the lateral correlation of the Moho topography between parallel seismic lines. The results indicate the existence of a major linear east–west-trending rise of the Moho below the metasedimentary English River subprovince, which is paralleled by crustal roots below the granite–greenstone Uchi and Wabigoon subprovinces. This correlation between the subprovincial structure at the surface and deep Moho undulations suggests that the topography of the crust–mantle boundary is related to the tectonic evolution of the Western Superior belts. Although certain features of the crust–mantle boundary are likely inherited from the accretionary and collisional stages of the Western Superior craton, gravity-driven processes triggered by subsequent magmatism and crustal softening may have played a role in both the preservation of those features, as well as in the development of new ones.


2009 ◽  
Vol 9 (3) ◽  
pp. 12027-12064 ◽  
Author(s):  
D. Huang ◽  
A. Gasiewksi ◽  
W. Wiscombe

Abstract. Tomographic methods offer a new promise for retrieving three-dimensional distributions of cloud liquid water from path-integrated radiometric measurements by passive sensors. A mobile cloud tomography system using only a single scanning microwave radiometer has many advantages over a fixed system using multiple distinctly-located radiometers, e.g., efficient and flexible data collection. Part 1 (this paper) examines the results from a limited cloud tomography trial carried out during the 2003 AMSR-E validation campaign at Wakasa Bay of the Sea of Japan. During the tomographic test, the Polarimetric Scanning Radiometer (PSR) and Microwave Imaging Radiometer (MIR) aboard the NASA P-3 research aircraft scanned through a system of low-level clouds and thus provided a useful dataset for testing the cloud tomography method. We conduct three retrieval runs with a constrained inversion algorithm using, respectively the PSR, MIR, and combined PSR and MSR data. The liquid water paths calculated from the PSR retrieval are consistent with that from the MIR retrieval. The retrieved cloud field based on the combined data appears to be physically plausible and consistent with the cloud image obtained by a cloud radar. It is unfortunate that there were no in-situ cloud measurements during the experiment that can be used to quantitatively validate the tomographic retrievals. Nevertheless, we find that some vertically-uniform clouds appear at high altitudes in the retrieved fields where the radar image shows clear sky. This is likely due to flawed data collection geometry, which, in turn, is determined by the radiometer scan strategy, and aircraft altitude and moving speed. This sets the stage for Part 2 of this study that aims at possible improvements of the mobile cloud tomography approach by a group of sensitivity studies using observation system simulation experiments.


2021 ◽  
Vol 60 (2) ◽  
pp. 140-160
Author(s):  
Sanjay Kumar ◽  
Anand Joshi ◽  
Raul R. Castro ◽  
Sandeep Singh ◽  
Shri Krishna Singh

Abstract          We apply an iterative inversion scheme, initially developed by Hashida and Shimazaki (1984) and later modified by Joshi et al., (2010), to estimate three - dimensional shear - wave quality factor, Qs(f), of south-central Gulf of California, Mexico. An area of 230 km x 288 km in this region is divided into 108 rectangular blocks of different Qs(f). We use 25 well-located earthquakes recorded at three broadband stations of the regional network RESBAN operated by CICESE (Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California) and three Ocean Bottom Seismographs (OBS) of the Sea of Cortez Ocean Bottom Array (SCOOBA) experiment.  This dataset permits us to obtain Qs(f) estimates of different blocks using the modified inversion algorithm. Qs(f) is obtained at various frequencies in 0.16 - 7.94 Hz range. We found that the estimated Qs structure correlates with geological and tectonic models of the region proposed in previous studies. A regional frequency-dependent relation using all 1944 values of shear-wave quality factor is obtained at 18 different frequencies in all blocks can be approximated by a function of the form Qs(f) = 20 f 1.2. This relation is typical in a tectonically active region with high S-wave attenuation and is similar to attenuation relations reported by other authors for the Imperial Valley, California region.


2010 ◽  
Vol 10 (14) ◽  
pp. 6685-6697 ◽  
Author(s):  
D. Huang ◽  
A. J. Gasiewski ◽  
W. Wiscombe

Abstract. Tomographic methods offer great potential for retrieving three-dimensional spatial distributions of cloud liquid water from radiometric observations by passive microwave sensors. Fixed tomographic systems require multiple radiometers, while mobile systems can use just a single radiometer. Part 1 (this paper) examines the results from a limited cloud tomography trial with a single-radiometer airborne system carried out as part of the 2003 AMSR-E validation campaign over Wakasa Bay of the Sea of Japan. During this trial, the Polarimetric Scanning Radiometer (PSR) and Microwave Imaging Radiometer (MIR) aboard the NASA P-3 research aircraft provided a useful dataset for testing the cloud tomography method over a system of low-level clouds. We do tomographic retrievals with a constrained inversion algorithm using three configurations: PSR, MIR, and combined PSR and MIR data. The liquid water paths from the PSR retrieval are consistent with those from the MIR retrieval. The retrieved cloud field based on the combined data appears to be physically plausible and consistent with the cloud image obtained by a cloud radar. We find that some vertically-uniform clouds appear at high altitudes in the retrieved field where the radar shows clear sky. This is likely due to the sub-optimal data collection strategy. This sets the stage for Part 2 of this study that aims to define optimal data collection strategies using observation system simulation experiments.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Claudio Estatico ◽  
Matteo Pastorino ◽  
Andrea Randazzo

A microwave imaging method previously developed for tomographic inspection of dielectric targets is extended to three-dimensional objects. The approach is based on the full vector equations of the electromagnetic inverse scattering problem. The ill-posedness of the problem is faced by the application of an inexact-Newton method. Preliminary reconstruction results are reported.


Geophysics ◽  
1990 ◽  
Vol 55 (10) ◽  
pp. 1321-1326 ◽  
Author(s):  
X. Wang ◽  
R. O. Hansen

Two‐dimensional (profile) inversion techniques for magnetic anomalies are widely used in exploration geophysics: but, until now, the three‐dimensional (3-D) methods available have been restricted in their geologic applicability, dependent upon good initial values or limited by the capabilities of existing computers. We have developed a fully 3-D inversion algorithm intended for routine application to large data sets. The algorithm based on a Fourier transform expression for the magnetic field of homogeneous polyhedral bodies (Hansen and Wang, 1998), is a 3-D generalization of CompuDepth (O’Brien, 1972). Like CompuDepth, the new inversion algorithm employs thespatial equivalent of frequency‐domain autoregression to determine a series of coefficients from which the depths and locations of polyhedral vertices are calculated by solving complex polynomials. These vertices are used to build a 3-D geologic model. Application to the Medicine Lake Volcano aeromagnetic anomaly resulted in a geologically reasonable model of the source.


Sign in / Sign up

Export Citation Format

Share Document