scholarly journals Differential response of soil microbial and animal communities along the chronosequence of Cunninghamia lanceolata at different soil depth levels in subtropical forest ecosystem

Author(s):  
Waqar Islam ◽  
Hafiz Sohaib Ahmad Saqib ◽  
Muhammad Adnan ◽  
Zhenyu Wang ◽  
Muhammad Tayyab ◽  
...  
2017 ◽  
Vol 84 (1) ◽  
Author(s):  
Hao Yu ◽  
Zhili He ◽  
Aijie Wang ◽  
Jianping Xie ◽  
Liyou Wu ◽  
...  

ABSTRACTNumerous studies have shown that the continuous increase of atmosphere CO2concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO2(eCO2) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO2exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO2significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO2at both soil depths, although the stimulation effect of eCO2on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO2in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO2increases.IMPORTANCEThe concentration of atmospheric carbon dioxide (CO2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO2(eCO2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO2on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO2at both soil depths. More functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO2at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 173
Author(s):  
Huiling Guan ◽  
Jiangwen Fan ◽  
Haiyan Zhang ◽  
Warwick Harris

Soil erosion is prevalent in karst areas, but few studies have compared the differences in the drivers for soil microbial communities among karst ecosystems with different soil depths, and most studies have focused on the local scale. To fill this research gap, we investigated the upper 20 cm soil layers of 10 shallow–soil depth (shallow–SDC, total soil depth less than 100 cm) and 11 deep–soil depth communities (deep–SDC, total soil depth more than 100 cm), covering a broad range of vegetation types, soils, and climates. The microbial community characteristics of both the shallow–SDC and deep–SDC soils were tested by phospholipid fatty acid (PLFAs) analysis, and the key drivers of the microbial communities were illustrated by forward selection and variance partitioning analysis. Our findings demonstrated that more abundant soil nutrients supported higher fungal PLFA in shallow–SDC than in deep–SDC (p < 0.05). Furthermore, stronger correlation between the microbial community and the plant–soil system was found in shallow–SDC: the pure plant effect explained the 43.2% of variance in microbial biomass and 57.8% of the variance in the ratio of Gram–positive bacteria to Gram–negative bacteria (G+/G−), and the ratio of fungi to total bacteria (F/B); the pure soil effect accounted for 68.6% variance in the microbial diversity. The ratio of microbial PLFA cyclopropyl to precursors (Cy/Pr) and the ratio of saturated PLFA to monounsaturated PLFA (S/M) as indicators of microbial stress were controlled by pH, but high pH was not conducive to microorganisms in this area. Meanwhile, Cy/Pr in all communities was >0.1, indicating that microorganisms were under environmental stress. Therefore, the further ecological restoration of degraded karst communities is needed to improve their microbial communities.


2013 ◽  
Vol 19 (9) ◽  
pp. 2867-2877 ◽  
Author(s):  
Youbing Zhou ◽  
Chris Newman ◽  
Jin Chen ◽  
Zongqiang Xie ◽  
David W. Macdonald

1996 ◽  
Vol 76 (4) ◽  
pp. 459-467 ◽  
Author(s):  
William R. Horwath ◽  
Eldor A. Paul ◽  
David Harris ◽  
Jeannette Norton ◽  
Leslie Jagger ◽  
...  

Chloroform fumigation-incubation (CFI) has made possible the extensive characterization of soil microbial biomass carbon (C) (MBC). Defining the non-microbial C mineralized in soils following fumigation remains the major limitation of CFI. The mineralization of non-microbial C during CFI was examined by adding 14C-maize to soil before incubation. The decomposition of the 14C-maize during a 10-d incubation after fumigation was 22.5% that in non-fumigated control soils. Re-inoculation of the fumigated soil raised 14C-maize decomposition to 77% that of the unfumigated control. A method was developed which varies the proportion of mineralized C from the unfumigated soil (UFC) that is subtracted in calculating CFI biomasss C. The proportion subtracted (P) varies according to a linear function of the ratio of C mineralized in the fumigated (FC) and unfumigated samples (FC/UFC) with two parameters K1 and K2 (P = K1FC/UFC) + K2). These parameters were estimated by regression of CFI biomass C, calculated according to the equation MBC = (FC − PUFC)/0.41, against that derived by direct microscopy in a series of California soils. Parameter values which gave the best estimate of microscopic biomass from the fumigation data were K1 = 0.29 and K2 = 0.23 (R2 = 0.87). Substituting these parameter values, the equation can be simplified to MBC = 1.73FC − 0.56UFC. The equation was applied to other CFI data to determine its effect on the measurement of MBC. The use of this approach corrected data that were previously difficult to interpret and helped to reveal temporal trends and changes in MBC associated with soil depth. Key words: Chloroform fumigation-incubation, soil microbial biomass, microscopically estimated biomass, carbon, control, 14C


Sign in / Sign up

Export Citation Format

Share Document