Seedling recruitment in a semi-arid steppe: The role of microsite and post-dispersal seed predation

2006 ◽  
Vol 67 (4) ◽  
pp. 701-714 ◽  
Author(s):  
G.G. Barberá ◽  
J.A. Navarro-Cano ◽  
V.M. Castillo
2020 ◽  
Author(s):  
Tongrui Zhang ◽  
Frank Yonghong Li ◽  
Hao Wang ◽  
Lin Wu ◽  
Chunjun Shi ◽  
...  

Abstract Aims Nutrient resorption is a key plant nutrient conservation strategy, and its response to environmental and management changes is linked to nutrient cycling and production of ecosystems. Defoliation is a major pathway of mowing affecting plant nutrient resorption and production in grasslands, while the effect of defoliation timing has not been unexplored. The aim of this study was to examine the effect of defoliation timing on plant nutrient resorption and production in a steppe ecosystem. Methods We conducted a field experiment in a semi-arid steppe of Inner Mongolia including four treatments: early defoliation, peak defoliation, late defoliation and non-defoliation. We measured plant nitrogen (N) and phosphorus (P) resorption at species and community levels, and quantified plant N and P fluxes in resorption, litter return and hay output. Plant production in the mowing system was assessed by hay production and quality. Important Findings Peak and late defoliation, but not early defoliation, reduced plant community N and P resorption proficiency (RP); and late defoliation reduced N resorption efficiency (RE) but not P resorption efficiency. Peak and late defoliation, but not early defoliation, reduced plant nutrient resorption flux and litter nutrient return flux. Defoliation timing did not alter root nutrient accumulation as nutrient uptake from soil likely compensated the deficit of nutrient resorption. Peak defoliation had the highest hay production and quality, while early defoliation had the lowest. Our results provide new insights into the nutrient cycling in mowing grassland, and imply that the mowing timing can be used as a tool to mediate the balance between conservation and production of steppes, and the early mowing before plant peak biomass period is recommended for conservation of the steppes while keeping sustainable pastoral production.


Pedobiologia ◽  
2021 ◽  
Vol 85-86 ◽  
pp. 150711
Author(s):  
Jianwei Cheng ◽  
Frank Yonghong Li ◽  
Xinmin Liu ◽  
Xinyu Wang ◽  
Dong Zhao ◽  
...  

Oecologia ◽  
1999 ◽  
Vol 118 (3) ◽  
pp. 288-296 ◽  
Author(s):  
G. R. Edwards ◽  
M. J. Crawley

2010 ◽  
Vol 24 (18) ◽  
pp. 2507-2519 ◽  
Author(s):  
Y. Zhao ◽  
S. Peth ◽  
X. Y. Wang ◽  
H. Lin ◽  
R. Horn

1987 ◽  
Vol 3 (3) ◽  
pp. 255-263 ◽  
Author(s):  
John A. Holt

ABSTRACTThe contribution of a population of mound building, detritivorous termites (Amitermes laurensis (Mjöberg)) to nett carbon mineralization in an Australian tropical semi-arid woodland has been examined. Carbon mineralization rates were estimated by measuring daily CO2 flux from five termite mounds at monthly intervals for 12 months. Carbon flux from the mounds was found to be due to microbial activity as well as termite activity. It is conservatively estimated that the association of A. laurensis and the microbial population present in their mounds is responsible for between 4%–10% of carbon mineralized in this ecosystem, and the contribution of all termites together (mound builders and subterranean) may account for up to 20% of carbon mineralized. Regression analysis showed that rates of carbon mineralization in termite mounds were significantly related to mound moisture and mound temperature. Soil moisture was the most important factor in soil carbon mineralization, with temperature and a moisture X temperature interaction term also exerting significant affects.


2007 ◽  
Vol 119 (1-2) ◽  
pp. 39-48 ◽  
Author(s):  
Isabelle Blanckaert ◽  
Koenraad Vancraeynest ◽  
Rony L. Swennen ◽  
Francisco J. Espinosa-García ◽  
Daniel Piñero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document