scholarly journals Intensive particle rearrangement in the early stage of spark plasma sintering process

2015 ◽  
Vol 3 (2) ◽  
pp. 183-187 ◽  
Author(s):  
Ling Wang ◽  
Vaclav Pouchly ◽  
Karel Maca ◽  
Zhijian Shen ◽  
Yan Xiong
2016 ◽  
Vol 697 ◽  
pp. 173-177
Author(s):  
Yan Xiong ◽  
Ling Wang ◽  
Chong Liu

The early-stage sintering behaviours of 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) ceramics during spark plasma sintering (SPS) was investigated using different pressure and heating regimes.It was found that dependent neither on pressure value (20~100 MPa) nor heating rates higher than 50 °C/min, the maximum densification rate had always been observed at rather similar ~78% of theoretical density (TD), where the grain growth was rather moderate. A novel intensive-particle-rearrangement mechanism was proposed to dominate the rapid densification of early-stage SPS process, by which yielded the considerable faster densification rate than those achievable by diffusion-related processes.Present findings showed the possibility of particle rearrangement in high density compacts and the effects of classic particle rearrangement should be re-evaluated in nanoceramic sintering.


2011 ◽  
Vol 49 (01) ◽  
pp. 40-45 ◽  
Author(s):  
Hyun-Kuk Park ◽  
Seung-Min Lee ◽  
Hee-Jun Youn ◽  
Ki-Sang Bang ◽  
Ik-Hyun Oh

Author(s):  
B Stalin ◽  
M Ravichandran ◽  
M Balasubramanian ◽  
C Anand Chairman ◽  
D Pritima ◽  
...  

2015 ◽  
Vol 13 ◽  
pp. 83-90 ◽  
Author(s):  
Cristiana Diana Cristea ◽  
Magdalena Lungu ◽  
Alexander M. Balagurov ◽  
Virgil Marinescu ◽  
Otilia Culicov ◽  
...  

The addition of Cu to near equiatomic NiTi shape memory alloys (SMAs) can provide some modifications of their shape memory properties by affecting their transformation behavior. The same effect was obtained in the case of Ni3Ti2 and Ni4Ti3 precipitates presence in the microstructure of NiTi. Also the substitution of Cu to NiTi alloys increases the hardness of the materials. This paper presents the microstructural and mechanical investigations of NiTi and NiTiCu alloys obtained by spark plasma sintering (SPS) process that represents a great potential for researchers as a new process for the fabrication of intermetallic compounds.


2008 ◽  
Vol 49 (12) ◽  
pp. 2899-2906 ◽  
Author(s):  
Salvatore Grasso ◽  
Yoshio Sakka ◽  
Giovanni Maizza

2016 ◽  
Vol 881 ◽  
pp. 307-312
Author(s):  
Luis Antonio C. Ybarra ◽  
Afonso Chimanski ◽  
Sergio Gama ◽  
Ricardo A.G. da Silva ◽  
Izabel Fernanda Machado ◽  
...  

Tungsten carbide (WC) based composites are usually produced with cobalt, but this binder has the inconvenience of shortage, unstable price and potential carcinogenicity. The objective of this study was to develop WC composite with intermetallic Fe3Al matrix. Powders of WC, iron and aluminum, with composition WC-10 wt% Fe3Al, and 0.5 wt% zinc stearate were milled in a vibration mill for 6 h and sintered in a SPS (spark plasma sintering) furnace at 1150 °C for 8 min under pressure of 30 MPa. Measured density and microstructure analysis showed that the composite had significant densification during the (low-temperature, short time) sintering, and X-ray diffraction analysis showed the formation of intermetallic Fe3Al. Analysis by Vickers indentation resulted in hardness of 11.2 GPa and fracture toughness of 24.6 MPa.m1/2, showing the feasibility of producing dense WC-Fe3Al composite with high mechanical properties using the SPS technique.


2015 ◽  
Vol 66 ◽  
pp. 1-7 ◽  
Author(s):  
L.H. Liu ◽  
C. Yang ◽  
Y.G. Yao ◽  
F. Wang ◽  
W.W. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document