The effect of simvastatin and pravastatin on arterial blood pressure, baroreflex, vasoconstrictor, and hypertensive effects of angiotensin II in Sprague–Dawley rats

2014 ◽  
Vol 8 (12) ◽  
pp. 863-871 ◽  
Author(s):  
Adrian Drapala ◽  
Marta Aleksandrowicz ◽  
Tymoteusz Zera ◽  
Mariusz Sikora ◽  
Janusz Skrzypecki ◽  
...  
Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 694-694
Author(s):  
Christoph P R Klett ◽  
Joey P Granger

P9 The synthesis and secretion of hepatic angiotensinogen is controlled by a complex pattern of physiologic and pathophysiologic mediators including glucocorticoids, estrogens, thyroid hormones, cytokines, glucagon,insulin, and prostaglandins. Since plasma concentrations of angiotensinogen are close to the Michaelis Menten constant, it was hypothesized that changes in angiotensinogen plasma concentrations have an influence on the formation rate of angiotensin I and angiotensin II and, therefore, on blood pressure. To further test this hypothesis we injected purified rat angiotensinogen i.v. in Sprague Dawley rats via the femoral vein. Mean arterial blood pressure was measured after arterial cathederization. Control animals had a mean arterial pressure of 131 ± 2 mm Hg before and after the injection of vehicle (saline). The injection of 0.8, 1,2, and 2.9 mg/kg angiotensinogen caused a dose dependend increase in mean arterial blood pressure of 8 ± 0.4, 19.3 ± 2.1, and 32 ± 2.4 mm Hg, respectively. In contrast, the injection of a purified rabbit anti-rat-angiotensinogen antibody 1.4 mg/kg resulted in a significant decrease in blood pressure (-52 ± 3.2 mmHg). In an attempt to analyze how fast and efficient angiotensinogen production can sense regulatory input and convert into adaptation of secretion rate we determined the transit time (time needed for translation and post-translational modifications) for angiotensinogen in a pulse chase experiment employing 35 [S]-methionine as label in freshly isolated hepatocytes. During the chase periode, after quantitative immunoprecipitation, we determined the transit time for angiotensinogen with 2.5 h which is consistent with the constitutive type of angiotensinogen secretion and the time lag found for plasma concentrations to respond to regulatory mediators. In summary we conclude that variations in angiotensinogen plasma concentrations can result in changes in blood pressure. In contrast to renin known as a tonic regulator for the generation of angiotensin I, angiotensinogen seems to be a factor rather important for long-term control of the basal activity of the renin angiotensin system.


2011 ◽  
Vol 89 (4) ◽  
pp. 295-304 ◽  
Author(s):  
A.K. Oloyo ◽  
O.A. Sofola ◽  
C.N. Anigbogu

The effect of sex hormones on vascular reactivity is considered one of the underlying factors contributing to gender differences in cardiovascular functions and diseases. Experiments were designed to investigate the role of androgens in salt-induced hypertension by assessing the relaxation response of isolated aortic rings to acetylcholine and sodium nitroprusside in the presence or absence of l-nitroarginine methyl ester in Sprague–Dawley rats. The rats were either orchidectomized or sham-operated, with or without testosterone replacement, and were placed on a normal or high-salt diet for 6 weeks. The results indicate a significant increase (p < 0.001) in the mean arterial blood pressure of rats on the high-salt diet, when compared with control or orchidectomized rats. Orchidectomy elicited a reduction in mean arterial blood pressure (p < 0.01), while testosterone replacement normalized mean arterial blood pressure to values seen in intact rats on the high-salt diet. The high-salt diet reduced the relaxation response to acetylcholine both in the presence and absence of inhibition of endothelial nitric oxide synthase with l-nitroarginine methyl ester. Bilateral orchidectomy attenuated the impaired endothelial function induced by the high-salt diet in rats, but this was reversed by concomitant administration of testosterone, suggesting a role for androgens in enhancing long-term vascular smooth muscle tone and hence maintenance of high blood pressure in salt-induced hypertension.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2817
Author(s):  
Evangeline Deer ◽  
Jalisa Jones ◽  
Denise Cornelius ◽  
Kyleigh Comley ◽  
Owen Herrock ◽  
...  

Preeclampsia (PE) is characterized by new onset hypertension in association with placental ischemia, reduced fetal weight, elevated soluble fms-like tyrosine kinase-1 (sFlt-1), and placental mitochondrial (mt) dysfunction and oxidative stress (ROS). Progesterone induced blocking factor (PIBF) is a product of progesterone signaling that blocks inflammatory processes and we have previously shown PIBF to lower mean arterial blood pressure (MAP) and sFlt-1 in a rat model of PE. Infusion of sFlt-1 causes hypertension and many characteristics of PE in pregnant rodents, however, its role in causing mt dysfunction is unknown. Therefore, we hypothesize that PIBF will improve mt function and MAP in response to elevated sFlt-1 during pregnancy. We tested our hypothesis by infusing sFlt-1 via miniosmotic pumps in normal pregnant (NP) Sprague-Dawley rats (3.7 μg·kg−1·day−1) on gestation days (GD) 13–19 in the presence or absence of PIBF (2.0 µg/mL) injected intraperitoneally on GD 15 and examined mean arterial blood pressure (MAP) and placental mt ROS on GD 19. sFlt-1 increased MAP to 112 + 2 (n = 11) compared to NP rats (98 + 2 mmHg, n = 15, p < 0.05), which was lowered in the presence of sFlt-1 (100 + 1 mmHg, n = 5, p < 0.05). Placental mtATP was reduced in sFlt-1 infused rats versus NP controls, but was improved with PIBF. Placental mtROS was elevated with sFlt-1 compared to NP controls, but was reduced with PIBF. Sera from NP + sFlt-1 increased endothelial cell mtROS, which was attenuated with PIBF. These data demonstrate sFlt-1 induced HTN during pregnancy reduces placental mt function. Importantly, PIBF improved placental mt function and HTN, indicating the efficacy of improved progesterone signaling as potential therapeutics for PE.


2005 ◽  
Vol 83 (5) ◽  
pp. 413-422 ◽  
Author(s):  
R Tatchum-Talom ◽  
K M Eyster ◽  
D S Martin

Sex differences in the degree of high blood pressure have been described in several forms of experimental animal models of hypertension. However, the influence of sex on angiotensin II-induced hypertension has not been studied. In the present study, we investigated and compared the effects of chronic angiotensin II treatment on blood pressure and vascular function in male and female rats. Chronic treatment with angiotensin II (0.7 mg/kg daily for 10 d) significantly raised arterial blood pressure in male but not female Sprague–Dawley rats; it upregulated the NAD(P)H oxidase gp67 phox subunit in the aorta of male but not female rats; and it exaggerated the vasoconstrictor responses to norepinephrine and serotonin in the mesenteric vascular bed (MVB) of male but not female rats. Vasodilator responses to acetylcholine (ACh) but not papaverine (PPV) or isoprenaline (ISO) were reduced in the MVB of angiotensin II-treated male but not female rats. ACh, but not PPV or ISO dilatory responses were potentiated in the MVB of angiotensin II-treated female rats. The present findings demonstrate that exogenous angiotensin II upregulates aortic NAD(P)H oxidase gp67 phox subunit, and induces hypertension and mesenteric vascular dysfunction only in male rats.Key words: gender, blood pressure, vascular endothelium, angiotensin II hypertension.


2008 ◽  
Vol 295 (5) ◽  
pp. R1546-R1554 ◽  
Author(s):  
Melissa Li ◽  
Xiaoling Dai ◽  
Stephanie Watts ◽  
David Kreulen ◽  
Gregory Fink

Endothelin (ET) type B receptors (ETBR) are expressed in multiple tissues and perform different functions depending on their location. ETBR mediate endothelium-dependent vasodilation, clearance of circulating ET, and diuretic effects; all of these should produce a fall in arterial blood pressure. However, we recently showed that chronic activation of ETBR in rats with the selective agonist sarafotoxin 6c (S6c) causes sustained hypertension. We have proposed that one mechanism of this effect is constriction of capacitance vessels. The current study was performed to determine whether S6c hypertension is caused by increased generation of reactive oxygen species (ROS) and/or activation of the sympathetic nervous system. The model used was continuous 5-day infusion of S6c into male Sprague-Dawley rats. No changes in superoxide anion levels in arteries and veins were found in hypertensive S6c-treated rats. However, superoxide levels were increased in sympathetic ganglia from S6c-treated rats. In addition, superoxide levels in ganglia increased progressively the longer the animals received S6c. Treatment with the antioxidant tempol impaired S6c-induced hypertension and decreased superoxide levels in ganglia. Acute ganglion blockade lowered blood pressure more in S6c-treated rats than in vehicle-treated rats. Although plasma norepinephrine levels were not increased in S6c hypertension, surgical ablation of the celiac ganglion plexus, which provides most of the sympathetic innervation to the splanchnic organs, significantly attenuated hypertension development. The results suggest that S6c-induced hypertension is partially mediated by sympathoexcitation to the splanchnic organs driven by increased oxidative stress in prevertebral sympathetic ganglia.


2016 ◽  
Vol 34 (Supplement 1) ◽  
pp. e291
Author(s):  
Seon-Ah Jin ◽  
Hee jung Seo ◽  
Sun Kyeong Kim ◽  
Gyu Yong Song ◽  
Jin-Ok Jeong

1985 ◽  
Vol 59 (5) ◽  
pp. 1410-1415 ◽  
Author(s):  
K. D. Marcus ◽  
C. M. Tipton

The influence of endurance training on functional capacity [maximal O2 consumption (VO2 max)], caudal arterial blood pressure, and myocardial capillary density were investigated in normotensive rats and rats made hypertensive using the two-kidney one-clip approach (Goldblatt's hypertension). Male Sprague-Dawley rats were assigned to sham (N: 120–140 mmHg), moderately hypertensive (MH = 0.30-mm clips, 150–170 mmHg), or severely hypertensive (SH = 0.25-mm clips, 190–230 mmHg) groups. Rats designated to be runners (T) were exercised on a motor-driven treadmill equal to 50–70% of their VO2 max values for 8–12 wk. Compared with their nontrained (NT) controls, training was associated with significantly higher VO2 max values (12–15%) and muscle cytochrome-c oxidase activities (33–78%). Resting systolic blood pressure was not significantly changed in the N-and MH-T subgroups; however, it was 20–30 mmHg higher in the SH-T subgroup. Mean absolute heart weight for only the N-T group was significantly heavier than their NT controls. However, the mean predicted heart weights (heart wt = 0.639 X body wt of N-NT + 0.001 g) of the two SH groups were significantly higher than expected. The SH-T group had a lower (11%) subepicardial capillary density mean than its NT control and significantly fewer capillaries in the subendocardial region than the other five subgroups. It was concluded that moderate exercise training appeared to be detrimental to rats with severe hypertension because it increased resting blood pressure and decreased myocardial capillary density, even though it improved their functioning capacity.


2006 ◽  
Vol 291 (1) ◽  
pp. F49-F57 ◽  
Author(s):  
Swasti Tiwari ◽  
Randall K. Packer ◽  
Xinqun Hu ◽  
Yoshihisa Sugimura ◽  
Joseph G. Verbalis ◽  
...  

Previously, we demonstrated that rats undergoing vasopressin escape had increased mean arterial blood pressure (MAP), plasma and urine aldosterone, and increased renal protein abundance of the α-subunit of the epithelial sodium channel (ENaC), the thiazide-sensitive Na-Cl cotransporter (NCC), and the 70-kDa band of γ-ENaC (Song J, Hu X, Khan O, Tian Y, Verbalis JG, and Ecelbarger CA. Am J Physiol Renal Physiol 287: F1076–F1083, 2004; Ecelbarger CA, Knepper MA, and Verbalis JG. J Am Soc Nephrol 12: 207–217, 2001). Here, we determine whether changes in these renal proteins and MAP require elevated aldosterone levels. We performed adrenalectomies (ADX) or sham surgeries on male Sprague-Dawley rats. Corticosterone and aldosterone were replaced to clamp these hormone levels. MAP was monitored by radiotelemetry. Rats were infused with 1-deamino-[8-d-arginine]-vasopressin (dDAVP) via osmotic minipumps (5 ng/h). At day 3 of dDAVP infusion, seven rats in each group were offered a liquid diet [water load (WL)] or continued on a solid diet (SD). Plasma aldosterone and corticosterone and urine aldosterone were increased by WL in sham rats. ADX-WL rats escaped, as assessed by early natriuresis followed by diuresis; however, urine volume and natriuresis were somewhat blunted. WL did not reduce the abundance or activity of 11-β-hydroxsteroid dehydrogenase type 2. Furthermore, the previously observed increase in renal aldosterone-sensitive proteins and escape-associated increased MAP persisted in clamped rats. The densitometry of immunoblots for NCC, α- and γ-70 kDa ENaC, respectively, were (% sham-SD): sham-WL, 159, 278, 233; ADX-SD, 69, 212, 171; ADX-WL, 116, 302, 161. However, clamping corticosteroids blunted the rise at least for NCC and γ-ENaC (70 kDa). Overall, the increase in aldosterone observed in vasopressin escape is not necessary for the increased expression of NCC, α- or γ-ENaC or increased MAP associated with “escape.”


Sign in / Sign up

Export Citation Format

Share Document