Sensitivity of the Earth’s middle atmosphere to short-term solar variability and its dependence on the choice of solar irradiance data set

2011 ◽  
Vol 73 (2-3) ◽  
pp. 348-355 ◽  
Author(s):  
A.V. Shapiro ◽  
E. Rozanov ◽  
T. Egorova ◽  
A.I. Shapiro ◽  
Th. Peter ◽  
...  
2011 ◽  
Vol 11 (12) ◽  
pp. 32455-32497 ◽  
Author(s):  
R. Muncaster ◽  
M. S. Bourqui ◽  
S. Chabrillat ◽  
S. Viscardy ◽  
S. Melo ◽  
...  

Abstract. The photochemical response of the stratosphere to short-term solar variability is investigated using a photochemistry column model with interactive photolysis calculation. The solar variability is here simply represented using the Lean (1997) solar minimum and maximum spectra. In order to isolate the photochemistry effect, simulations are devoid of diffusion or any other external forcing and the temperature is held constant. The solar mininum/maximum response is estimated for all chemical families and partitioning ratios, and the underlying photochemical mechanisms are described in detail. The ozone response peaks at 0.18 ppmv (approximatively 3%) at 37 km altitude. In an attempt to find the simplest statistical model able to represent the effect of solar variability in the stratosphere, the diurnal-average response of ozone from an ensemble of 200 simulations is regressed linearly following two auto-regressive models. In the simplest case, an adjusted coefficient of determination R2 larger than 0.97 is found throughout the stratosphere using two predictors, namely the previous day's ozone perturbation and the current day's solar irradiance perturbation. A better accuracy (R2 larger than 0.9992) is achieved with an additional predictor, the previous day's solar irradiance perturbation. The skills of the two auto-regressive models at representing the effect of solar variability are then evaluated independently when coupled either on-line or off-line with the comprehensive photochemistry column model driven by the solar average spectrum. In all cases, the magnitude of the bias and the RMS error are found smaller than 5% and 20% of the ozone response, respectively. When used on-line, the 3-predictor model captures the ozone response to solar variability throughout the stratosphere with bias and RMS error lower than 1% and 15% of the ozone response, respectively. The results are found to be insensitive to an increase in the magnitude of the solar variability by a factor three, when this increase is applied uniformly throughout the solar spectrum. These statistical models offer accurate, computationally inexpensive parameterisations of the effect of solar variability in the stratosphere for climate-chemistry models with simplified chemistry that can be driven by any solar variability index. Finally, the statistical approach introduced here, based on ensemble photochemical simulations, provides an effective gauge to measure the effects of using more realistic solar variability spectra on the ozone response.


2021 ◽  
Author(s):  
Subhajit Debnath ◽  
Uma Das

<p>A short term variability of migrating and non migrating tide is investigated in the stratosphere from the regular Canadian Middle Atmosphere Model (CMAM) and reanalysis ERA-interim temperature and wind dataset during winter of 2006 to 2010. Short term variability of tides is examined by ±10 day’s window size from Earth’s surface to 1hPa pressure level. To examine the short term variability of migrating and non migrating tide in stratosphere, we applied the fast fourier transform method to the CMAM30 and ERA-interim observation. The results reveal that tide changes with amplitude of 1-2K regularly on short timescales (21days) in stratosphere. Similar variability occurs in ERA-interim reanalysis observation. Non-migrating tide DS0 shows strong winter features with finer variation during 2009 and 2010 at 65°N. The short term variability of DE3 tide in stratosphere during 2008 and 2010 may be driven by zonal mean wind and non linear interaction with planetary wave. Amplitude of DW1 shows day to day variabilities clearly during winter of 2006, 2008 and 2009 at 0.7hPa over the equator and mid-latitude while the peak of DW1 is absent at 1hPa and 10hPa from CMAM temperature data set. Short term tidal variability in the stratosphere is not related to a single source. It depends on ozone density, zonal mean wind, and wave-wave non linear interactions. By using smaller window size, short term variabilities and finer variation of non migrating tides and SPW1 are understood. These results will be compared to results from satellite temperature data set, particularly FORMOSAT-3/COMSIC, for investigating short term tidal variability in the stratosphere.</p>


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1856 ◽  
Author(s):  
Munir Husein ◽  
Il-Yop Chung

In microgrids, forecasting solar power output is crucial for optimizing operation and reducing the impact of uncertainty. To forecast solar power output, it is essential to forecast solar irradiance, which typically requires historical solar irradiance data. These data are often unavailable for residential and commercial microgrids that incorporate solar photovoltaic. In this study, we propose an hourly day-ahead solar irradiance forecasting model that does not depend on the historical solar irradiance data; it uses only widely available weather data, namely, dry-bulb temperature, dew-point temperature, and relative humidity. The model was developed using a deep, long short-term memory recurrent neural network (LSTM-RNN). We compare this approach with a feedforward neural network (FFNN), which is a method with a proven record of accomplishment in solar irradiance forecasting. To provide a comprehensive evaluation of this approach, we performed six experiments using measurement data from weather stations in Germany, U.S.A, Switzerland, and South Korea, which all have distinct climate types. Experiment results show that the proposed approach is more accurate than FFNN, and achieves the accuracy of up to 60.31 W/m2 in terms of root-mean-square error (RMSE). Moreover, compared with the persistence model, the proposed model achieves average forecast skill of 50.90% and up to 68.89% in some datasets. In addition, to demonstrate the effect of using a particular forecasting model on the microgrid operation optimization, we simulate a one-year operation of a commercial building microgrid. Results show that the proposed approach is more accurate, and leads to a 2% rise in annual energy savings compared with FFNN.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Konrad Nering

AbstractThis paper describes a fully functional short-term flood prediction system. Its effect has been tested on watershed of Lubieńka river in Małopolska. To use this system it must have a data set also described in this paper. A modification of the system to adopt for predicting flash floods was described. Full operation of the system is shown on example of real flood on Lubieńka river in June 2011.


Solar Energy ◽  
2021 ◽  
Vol 216 ◽  
pp. 508-517
Author(s):  
Grant Buster ◽  
Michael Rossol ◽  
Galen Maclaurin ◽  
Yu Xie ◽  
Manajit Sengupta

2010 ◽  
Vol 6 (S273) ◽  
pp. 89-95 ◽  
Author(s):  
A. F. Lanza

AbstractThe photospheric spot activity of some of the stars with transiting planets discovered by the CoRoT space experiment is reviewed. Their out-of-transit light modulations are fitted by a spot model previously tested with the total solar irradiance variations. This approach allows us to study the longitude distribution of the spotted area and its variations versus time during the five months of a typical CoRoT time series. The migration of the spots in longitude provides a lower limit for the surface differential rotation, while the variation of the total spotted area can be used to search for short-term cycles akin the solar Rieger cycles. The possible impact of a close-in giant planet on stellar activity is also discussed.


2012 ◽  
Vol 7 (2) ◽  
pp. 236-257 ◽  
Author(s):  
Jaap Spreeuw ◽  
Iqbal Owadally

AbstractWe analyze the mortality of couples by fitting a multiple state model to a large insurance data set. We find evidence that mortality rates increase after the death of a partner and, in addition, that this phenomenon diminishes over time. This is popularly known as a “broken-heart” effect and we find that it affects widowers more than widows. Remaining lifetimes of joint lives therefore exhibit short-term dependence. We carry out numerical work involving the pricing and valuation of typical contingent assurance contracts and of a joint life and survivor annuity. If insurers ignore dependence, or mis-specify it as long-term dependence, then significant mis-pricing and inappropriate provisioning can result. Detailed numerical results are presented.


Sign in / Sign up

Export Citation Format

Share Document