Horizontal extension of acoustic resonance between the ground and the lower thermosphere

2012 ◽  
Vol 75-76 ◽  
pp. 127-132 ◽  
Author(s):  
Mitsuru Matsumura ◽  
Hiroyuki Shinagawa ◽  
Toshihiko Iyemori
2020 ◽  
Vol 63 (1) ◽  
pp. 109-124
Author(s):  
Carly Jo Hosbach-Cannon ◽  
Soren Y. Lowell ◽  
Raymond H. Colton ◽  
Richard T. Kelley ◽  
Xue Bao

Purpose To advance our current knowledge of singer physiology by using ultrasonography in combination with acoustic measures to compare physiological differences between musical theater (MT) and opera (OP) singers under controlled phonation conditions. Primary objectives addressed in this study were (a) to determine if differences in hyolaryngeal and vocal fold contact dynamics occur between two professional voice populations (MT and OP) during singing tasks and (b) to determine if differences occur between MT and OP singers in oral configuration and associated acoustic resonance during singing tasks. Method Twenty-one singers (10 MT and 11 OP) were included. All participants were currently enrolled in a music program. Experimental procedures consisted of sustained phonation on the vowels /i/ and /ɑ/ during both a low-pitch task and a high-pitch task. Measures of hyolaryngeal elevation, tongue height, and tongue advancement were assessed using ultrasonography. Vocal fold contact dynamics were measured using electroglottography. Simultaneous acoustic recordings were obtained during all ultrasonography procedures for analysis of the first two formant frequencies. Results Significant oral configuration differences, reflected by measures of tongue height and tongue advancement, were seen between groups. Measures of acoustic resonance also showed significant differences between groups during specific tasks. Both singer groups significantly raised their hyoid position when singing high-pitched vowels, but hyoid elevation was not statistically different between groups. Likewise, vocal fold contact dynamics did not significantly differentiate the two singer groups. Conclusions These findings suggest that, under controlled phonation conditions, MT singers alter their oral configuration and achieve differing resultant formants as compared with OP singers. Because singers are at a high risk of developing a voice disorder, understanding how these two groups of singers adjust their vocal tract configuration during their specific singing genre may help to identify risky vocal behavior and provide a basis for prevention of voice disorders.


2013 ◽  
Author(s):  
Timothy K. Stanton ◽  
J. M. Jech ◽  
Roger C. Gauss

2011 ◽  
Author(s):  
Timothy K. Stanton ◽  
J. M. Jech ◽  
Roger C. Gauss

2019 ◽  
Vol 9 ◽  
pp. A39 ◽  
Author(s):  
Maxim V. Klimenko ◽  
Vladimir V. Klimenko ◽  
Fedor S. Bessarab ◽  
Timofei V. Sukhodolov ◽  
Pavel A. Vasilev ◽  
...  

We apply the Entire Atmosphere GLobal (EAGLE) model to investigate the upper atmosphere response to the January 2009 sudden stratospheric warming (SSW) event. The model successfully reproduces neutral temperature and total electron content (TEC) observations. Using both model and observational data, we identify a cooling in the tropical lower thermosphere caused by the SSW. This cooling affects the zonal electric field close to the equator, leading to an enhanced vertical plasma drift. We demonstrate that along with a SSW-related wind disturbance, which is the main source to form a dynamo electric field in the ionosphere, perturbations of the ionospheric conductivity also make a significant contribution to the formation of the electric field response to SSW. The post-sunset TEC enhancement and pre-sunrise electron content reduction are revealed as a response to the 2009 SSW. We show that at post-sunset hours the SSW affects low-latitude TEC via a disturbance of the meridional electric field. We also show that the phase change of the semidiurnal migrating solar tide (SW2) in the neutral wind caused by the 2009 SSW at the altitude of the dynamo electric field generation has a crucial importance for the SW2 phase change in the zonal electric field. Such changes lead to the appearance of anomalous diurnal variability of the equatorial electromagnetic plasma drift and subsequent low-latitudinal TEC disturbances in agreement with available observations. Plain Language Summary – Entire Atmosphere GLobal model (EAGLE) interactively calculates the troposphere, stratosphere, mesosphere, thermosphere, and plasmasphere–ionosphere system states and their response to various natural and anthropogenic forcing. In this paper, we study the upper atmosphere response to the major sudden stratospheric warming that occurred in January 2009. Our results agree well with the observed evolution of the neutral temperature in the upper atmosphere and with low-latitude ionospheric disturbances over America. For the first time, we identify an SSW-related cooling in the tropical lower thermosphere that, in turn, could provide additional information for understanding the mechanisms for the generation of electric field disturbances observed at low latitudes. We show that the SSW-related vertical electromagnetic drift due to electric field disturbances is a key mechanism for interpretation of an observed anomalous diurnal development of the equatorial ionization anomaly during the 2009 SSW event. We demonstrate that the link between thermospheric winds and the ionospheric dynamo electric field during the SSW is attained through the modulation of the semidiurnal migrating solar tide.


Author(s):  
S. S. Borges ◽  
R. Barbieri ◽  
P. S. B. Zdanski

The objective of this work is to present, by means of experimental, analytical and numerical techniques that sound pressure level generated by radial-bladed centrifugal fans of electric motor cooling systems may be expressed by a logarithmical ratio of the peripheral velocity of rotor, volumetric flow and efficiency of the fan. The proposed methodology proved to be efficient and simple in the prediction of generated noise by radial-bladed centrifugal fans of TEFC motors with accuracy of ± 3 dB. In addition, the acoustic resonance mode of the fan cavity were determined by means of numerical simulations, which its results were validated through experiments using waterfall spectrum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anas Alfarsi ◽  
Céline Caillet ◽  
Garry Fawbert ◽  
Simon Lawrence ◽  
Jacob Krüse ◽  
...  

AbstractThe trade in falsified medicine has increased significantly and it is estimated that global falsified sales have reached $100 billion in 2020. The EU Falsified Medicines Directive states that falsified medicines do not only reach patients through illegal routes but also via the legal supply chain. Falsified medicines can contain harmful ingredients. They can also contain too little or too much active ingredient or no active ingredient at all. BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy) harnesses an acoustic phenomenon associated with the dissolution of a sample (tablet or powder). The resulting acoustic spectrum is unique and intrinsic to the sample and can be used as an identifier or signature profile. BARDS was evaluated in this study to determine whether a product is falsified or genuine in a rapid manner and at lower cost than many existing technologies. A range of genuine and falsified medicines, including falsified antimalarial tablets from south-east Asia, were tested, and compared to their counterpart genuine products. Significant differences between genuine and falsified doses were found in their acoustic signatures as they disintegrate and dissolve. Principal component analysis was employed to differentiate between the genuine and falsified medicines. This demonstrates that the tablets and capsules included here have intrinsic acoustic signatures which could be used to screen the quality of medicines.


Sign in / Sign up

Export Citation Format

Share Document