Air density in the lower thermosphere

1965 ◽  
Author(s):  
R. POE ◽  
H. SMALL
2019 ◽  
Vol 9 ◽  
pp. A39 ◽  
Author(s):  
Maxim V. Klimenko ◽  
Vladimir V. Klimenko ◽  
Fedor S. Bessarab ◽  
Timofei V. Sukhodolov ◽  
Pavel A. Vasilev ◽  
...  

We apply the Entire Atmosphere GLobal (EAGLE) model to investigate the upper atmosphere response to the January 2009 sudden stratospheric warming (SSW) event. The model successfully reproduces neutral temperature and total electron content (TEC) observations. Using both model and observational data, we identify a cooling in the tropical lower thermosphere caused by the SSW. This cooling affects the zonal electric field close to the equator, leading to an enhanced vertical plasma drift. We demonstrate that along with a SSW-related wind disturbance, which is the main source to form a dynamo electric field in the ionosphere, perturbations of the ionospheric conductivity also make a significant contribution to the formation of the electric field response to SSW. The post-sunset TEC enhancement and pre-sunrise electron content reduction are revealed as a response to the 2009 SSW. We show that at post-sunset hours the SSW affects low-latitude TEC via a disturbance of the meridional electric field. We also show that the phase change of the semidiurnal migrating solar tide (SW2) in the neutral wind caused by the 2009 SSW at the altitude of the dynamo electric field generation has a crucial importance for the SW2 phase change in the zonal electric field. Such changes lead to the appearance of anomalous diurnal variability of the equatorial electromagnetic plasma drift and subsequent low-latitudinal TEC disturbances in agreement with available observations. Plain Language Summary – Entire Atmosphere GLobal model (EAGLE) interactively calculates the troposphere, stratosphere, mesosphere, thermosphere, and plasmasphere–ionosphere system states and their response to various natural and anthropogenic forcing. In this paper, we study the upper atmosphere response to the major sudden stratospheric warming that occurred in January 2009. Our results agree well with the observed evolution of the neutral temperature in the upper atmosphere and with low-latitude ionospheric disturbances over America. For the first time, we identify an SSW-related cooling in the tropical lower thermosphere that, in turn, could provide additional information for understanding the mechanisms for the generation of electric field disturbances observed at low latitudes. We show that the SSW-related vertical electromagnetic drift due to electric field disturbances is a key mechanism for interpretation of an observed anomalous diurnal development of the equatorial ionization anomaly during the 2009 SSW event. We demonstrate that the link between thermospheric winds and the ionospheric dynamo electric field during the SSW is attained through the modulation of the semidiurnal migrating solar tide.


2005 ◽  
Vol 62 (12) ◽  
pp. 4384-4399 ◽  
Author(s):  
Rolando R. Garcia ◽  
Ruth Lieberman ◽  
James M. Russell ◽  
Martin G. Mlynczak

Abstract Observations made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board NASA’s Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) satellite have been processed using Salby’s fast Fourier synoptic mapping (FFSM) algorithm. The mapped data provide a first synoptic look at the mean structure and traveling waves of the mesosphere and lower thermosphere (MLT) since the launch of the TIMED satellite in December 2001. The results show the presence of various wave modes in the MLT, which reach largest amplitude above the mesopause and include Kelvin and Rossby–gravity waves, eastward-propagating diurnal oscillations (“non-sun-synchronous tides”), and a set of quasi-normal modes associated with the so-called 2-day wave. The latter exhibits marked seasonal variability, attaining large amplitudes during the solstices and all but disappearing at the equinoxes. SABER data also show a strong quasi-stationary Rossby wave signal throughout the middle atmosphere of the winter hemisphere; the signal extends into the Tropics and even into the summer hemisphere in the MLT, suggesting ducting by westerly background zonal winds. At certain times of the year, the 5-day Rossby normal mode and the 4-day wave associated with instability of the polar night jet are also prominent in SABER data.


The Auk ◽  
2021 ◽  
Author(s):  
Jessie L Williamson ◽  
Christopher C Witt

Abstract Elevational migration can be defined as roundtrip seasonal movement that involves upward and downward shifts in elevation. These shifts incur physiological challenges that are proportional to the degree of elevational change. Larger shifts in elevation correspond to larger shifts in partial pressure of oxygen, air density, temperature, and ultraviolet (UV) exposure. Although most avian examples of elevational migration involve subtle shifts that would have minimal impacts on physiology, shifts of any magnitude have previously been considered under the broad umbrella of “elevational migration”. Here, we consider extreme seasonal elevational movements (≥2,000 m), sufficient to shift the elevational dimension of the eco-climatic niche. Migratory bird populations typically maintain inter-seasonal stability in the temperature, precipitation, and elevational aspects of their climatic niches, a tendency that likely reflects genetic physiological specialization on environmental conditions such as atmospheric pressure. A shift of ≥2,000 m involves a ≥20% change in air density and oxygen partial pressure, sufficient to incur functionally impactful declines in arterial blood-oxygen saturation and require compensatory shifts in respiratory physiology. We refer to this phenomenon as elevational niche-shift migration (ENSM). In this review, we analyzed >4 million occurrence records to identify 105 populations, representing 92 bird species, that undergo complete or partial ENSM. We identified key ecological and evolutionary questions regarding the causes and consequences of ENSM. Our synthesis reveals that ENSM has evolved independently in at least 29 avian families spanning 10 orders. Nonetheless, ENSM is rare relative to other forms of seasonal migration, consistent with the general tendency of seasonal niche conservatism by migratory species and evolutionarily conserved elevational range limits. For many migratory species and populations, within-species patterns of migratory connectivity are not sufficiently understood to determine ENSM status. ENSM is distinguished by its scale within the broader phenomenon of elevational migration. Critical examination of ENSM illustrates fundamental constraints on the ecology and evolution of migration systems, topographical influences on geographic patterns of migratory connectivity, and the remarkable metabolic flexibility of certain bird species that allows them to occupy disparate elevations across different seasons.


2012 ◽  
Vol 75-76 ◽  
pp. 127-132 ◽  
Author(s):  
Mitsuru Matsumura ◽  
Hiroyuki Shinagawa ◽  
Toshihiko Iyemori

1999 ◽  
Vol 51 (7-8) ◽  
pp. 701-709 ◽  
Author(s):  
Yu. I. Portnyagin ◽  
T. V. Solovjova ◽  
D. Y. Wang

2013 ◽  
Vol 24 ◽  
pp. 1360002
Author(s):  
RUILIN ZHONG ◽  
JIAN WANG ◽  
CHANGQING CAI ◽  
HONG YAO ◽  
JIN'AN DING ◽  
...  

Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.


2015 ◽  
Vol 56 (7) ◽  
pp. 1354-1365 ◽  
Author(s):  
Xin Yao ◽  
Tao Yu ◽  
Biqiang Zhao ◽  
You Yu ◽  
Libo Liu ◽  
...  

1994 ◽  
Vol 56 (13-14) ◽  
pp. 1731-1752 ◽  
Author(s):  
Yu.I. Portnyagin ◽  
N.A. Makarov ◽  
R.P. Chebotarev ◽  
A.M. Nikonov ◽  
E.S. Kazimirovsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document