Oxidative/heat stress enhanced production of chitosanase from Streptomyces griseus cells through its interaction with liposome

2009 ◽  
Vol 108 (6) ◽  
pp. 471-476 ◽  
Author(s):  
Kien Xuan Ngo ◽  
Hiroshi Umakoshi ◽  
Haruyuki Ishii ◽  
Huong Thi Bui ◽  
Toshinori Shimanouchi ◽  
...  
2008 ◽  
Vol 106 (6) ◽  
pp. 602-605 ◽  
Author(s):  
Kien Xuan Ngo ◽  
Hiroshi Umakoshi ◽  
Toshinori Shimanouchi ◽  
Huong Thi Bui ◽  
Ryoichi Kuboi

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1143e-1143
Author(s):  
Abbas M. Shirazi ◽  
Leslie H. Fuchigami ◽  
Tony H.H. Chen

Red-osier dogwood sterns, Cornus sericea L., at ten different growth stages were subjected to a series of temperatures ranging from 25C to 60C by immersing them in a water bath for one hour. After heat treatments, the viability of internode tissues were determined by electrical conductivity and ethylene production. Heat tolerance was expressed as LT50, the temperature at which 50% of the tissues were injured. The results suggest that the LT50 of dormant plants remained relatively constant, approximately 53C. During dormancy, heat stress did not stimulate ethylene production from internode tissues. In contrast, tissues from non-dormant plants exposed to heat stress produced increasing levels of ethylene reaching a peak at 40C followed by a steady decrease at higher temperatures. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) to stem segments from dormant plants, following heat treatment, enhanced production of ethylene.


2005 ◽  
Vol 100 (5) ◽  
pp. 495-501 ◽  
Author(s):  
Kien Xuan Ngo ◽  
Hiroshi Umakoshi ◽  
Toshinori Shimanouchi ◽  
Ho Sup Jung ◽  
Seiichi Morita ◽  
...  

2008 ◽  
Vol 74 (23) ◽  
pp. 7286-7296 ◽  
Author(s):  
Jan Bursy ◽  
Anne U. Kuhlmann ◽  
Marco Pittelkow ◽  
Holger Hartmann ◽  
Mohamed Jebbar ◽  
...  

ABSTRACT Streptomyces coelicolor A3(2) synthesizes ectoine and 5-hydroxyectoine upon the imposition of either salt (0.5 M NaCl) or heat stress (39°C). The cells produced the highest cellular levels of these compatible solutes when both stress conditions were simultaneously imposed. Protection against either severe salt (1.2 M NaCl) or heat stress (39°C) or a combination of both environmental cues could be accomplished by adding low concentrations (1 mM) of either ectoine or 5-hydroxyectoine to S. coelicolor A3(2) cultures. The best salt and heat stress protection was observed when a mixture of ectoine and 5-hydroxyectoine (0.5 mM each) was provided to the growth medium. Transport assays with radiolabeled ectoine demonstrated that uptake was triggered by either salt or heat stress. The most effective transport and accumulation of [14C]ectoine by S. coelicolor A3(2) were achieved when both environmental cues were simultaneously applied. Our results demonstrate that the accumulation of the compatible solutes ectoine and 5-hydroxyectoine allows S. coelicolor A3(2) to fend off the detrimental effects of both high salinity and high temperature on cell physiology. We also characterized the enzyme (EctD) required for the synthesis of 5-hydroxyectoine from ectoine, a hydroxylase of the superfamily of the non-heme-containing iron(II)- and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11). The gene cluster (ectABCD) encoding the enzymes for ectoine and 5-hydroxyectoine biosynthesis can be found in the genome of S. coelicolor A3(2), Streptomyces avermitilis, Streptomyces griseus, Streptomyces scabiei, and Streptomyces chrysomallus, suggesting that these compatible solutes play an important role as stress protectants in the genus Streptomyces.


2004 ◽  
Vol 71 ◽  
pp. 97-106 ◽  
Author(s):  
Mark Burkitt ◽  
Clare Jones ◽  
Andrew Lawrence ◽  
Peter Wardman

The release of cytochrome c from mitochondria during apoptosis results in the enhanced production of superoxide radicals, which are converted to H2O2 by Mn-superoxide dismutase. We have been concerned with the role of cytochrome c/H2O2 in the induction of oxidative stress during apoptosis. Our initial studies showed that cytochrome c is a potent catalyst of 2′,7′-dichlorofluorescin oxidation, thereby explaining the increased rate of production of the fluorophore 2′,7′-dichlorofluorescein in apoptotic cells. Although it has been speculated that the oxidizing species may be a ferryl-haem intermediate, no definitive evidence for the formation of such a species has been reported. Alternatively, it is possible that the hydroxyl radical may be generated, as seen in the reaction of certain iron chelates with H2O2. By examining the effects of radical scavengers on 2′,7′-dichlorofluorescin oxidation by cytochrome c/H2O2, together with complementary EPR studies, we have demonstrated that the hydroxyl radical is not generated. Our findings point, instead, to the formation of a peroxidase compound I species, with one oxidizing equivalent present as an oxo-ferryl haem intermediate and the other as the tyrosyl radical identified by Barr and colleagues [Barr, Gunther, Deterding, Tomer and Mason (1996) J. Biol. Chem. 271, 15498-15503]. Studies with spin traps indicated that the oxo-ferryl haem is the active oxidant. These findings provide a physico-chemical basis for the redox changes that occur during apoptosis. Excessive changes (possibly catalysed by cytochrome c) may have implications for the redox regulation of cell death, including the sensitivity of tumour cells to chemotherapeutic agents.


2018 ◽  
Vol 34 (1) ◽  
pp. 51-64
Author(s):  
A. Hemantaranjan ◽  
◽  
C.P. Malik ◽  
A. Nishant Bhanu ◽  
◽  
...  

2002 ◽  
Author(s):  
P. Russo ◽  
J. Silkowski ◽  
R. Espree ◽  
J. Urban

1999 ◽  
Author(s):  
G. Kinnes ◽  
P. Jensen ◽  
K. Mead ◽  
D. Watkins ◽  
L. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document