Metabolic and evolutionary engineering of Mannheimia succiniciproducens for the enhanced succinate productivity

2010 ◽  
Vol 150 ◽  
pp. 516-516 ◽  
Author(s):  
J.W. Lee ◽  
S.Y. Lee ◽  
J.S. Yoo
Beverages ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 3 ◽  
Author(s):  
Fabrizio Iattici ◽  
Martina Catallo ◽  
Lisa Solieri

Beer is a fermented beverage with a history as old as human civilization. Ales and lagers are by far the most common beers; however, diversification is becoming increasingly important in the brewing market and the brewers are continuously interested in improving and extending the range of products, especially in the craft brewery sector. Fermentation is one of the widest spaces for innovation in the brewing process. Besides Saccharomyces cerevisiae ale and Saccharomyces pastorianus lager strains conventionally used in macro-breweries, there is an increasing demand for novel yeast starter cultures tailored for producing beer styles with diversified aroma profiles. Recently, four genetic engineering-free approaches expanded the genetic background and the phenotypic biodiversity of brewing yeasts and allowed novel costumed-designed starter cultures to be developed: (1) the research for new performant S. cerevisiae yeasts from fermented foods alternative to beer; (2) the creation of synthetic hybrids between S. cerevisiae and Saccharomyces non-cerevisiae in order to mimic lager yeasts; (3) the exploitation of evolutionary engineering approaches; (4) the usage of non-Saccharomyces yeasts. Here, we summarized the pro and contra of these approaches and provided an overview on the most recent advances on how brewing yeast genome evolved and domestication took place. The resulting correlation maps between genotypes and relevant brewing phenotypes can assist and further improve the search for novel craft beer starter yeasts, enhancing the portfolio of diversified products offered to the final customer.


2011 ◽  
Vol 99 (4) ◽  
pp. 825-835 ◽  
Author(s):  
Mustafa Şen ◽  
Ülkü Yılmaz ◽  
Aslı Baysal ◽  
Süleyman Akman ◽  
Z. Petek Çakar

2017 ◽  
Vol 8 ◽  
Author(s):  
Anja Brickwedde ◽  
Marcel van den Broek ◽  
Jan-Maarten A. Geertman ◽  
Frederico Magalhães ◽  
Niels G. A. Kuijpers ◽  
...  

Author(s):  
Hugo de Garis ◽  
Chen Xiaoxi ◽  
Ben Goertzel

This chapter describes a 4 year research project (2008-2011) to build China’s first artificial brain. It takes an “evolutionary engineering” approach, by evolving 10,000s of neural net modules, (or “agents” in the sense of Minsky’s “Society of Mind” [Minsky 1988, 2007]), and connecting them to make artificial brains. These modules are evolved rapidly in seconds on a “Tesla” PC Supercomputer, and connected according to the artificial brain designs of human “BAs” (Brain Architects). The artificial brain will eventually contain thousands of pattern recognizer modules, and hundreds of decision modules that when suitably combined will control the hundreds of behaviors of a walking, talking robot.


2008 ◽  
Vol 74 (6) ◽  
pp. 1748-1756 ◽  
Author(s):  
Pedro M. R. Guimarães ◽  
Jean François ◽  
Jean Luc Parrou ◽  
José A. Teixeira ◽  
Lucília Domingues

ABSTRACT The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (β-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain was therefore subjected to an evolutionary engineering process (serial transfer and dilution in lactose medium), which yielded an evolved recombinant strain that consumed lactose twofold faster, producing 30% more ethanol than the original recombinant. We identified two molecular events that targeted the LAC construct in the evolved strain: a 1,593-bp deletion in the intergenic region (promoter) between LAC4 and LAC12 and a decrease of the plasmid copy number by about 10-fold compared to that in the original recombinant. The results suggest that the intact promoter was unable to mediate the induction of the transcription of LAC4 and LAC12 by lactose in the original recombinant and that the deletion established the transcriptional induction of both genes in the evolved strain. We propose that the tuning of the expression of the heterologous LAC genes in the evolved recombinant was accomplished by the interplay between the decreased copy number of both genes and the different levels of transcriptional induction for LAC4 and LAC12 resulting from the changed promoter structure. Nevertheless, our results do not exclude other possible mutations that may have contributed to the improved lactose fermentation phenotype. This study illustrates the usefulness of simple evolutionary engineering approaches in strain improvement. The evolved strain efficiently fermented threefold-concentrated cheese whey, providing an attractive alternative for the fermentation of lactose-based media.


2006 ◽  
Vol 41 (6) ◽  
pp. 1461-1465 ◽  
Author(s):  
Yun Suk Huh ◽  
Young-Si Jun ◽  
Yeon Ki Hong ◽  
Hyohak Song ◽  
Sang Yup Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document