scholarly journals Adaptive Evolution of a Lactose-Consuming Saccharomyces cerevisiae Recombinant

2008 ◽  
Vol 74 (6) ◽  
pp. 1748-1756 ◽  
Author(s):  
Pedro M. R. Guimarães ◽  
Jean François ◽  
Jean Luc Parrou ◽  
José A. Teixeira ◽  
Lucília Domingues

ABSTRACT The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (β-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain was therefore subjected to an evolutionary engineering process (serial transfer and dilution in lactose medium), which yielded an evolved recombinant strain that consumed lactose twofold faster, producing 30% more ethanol than the original recombinant. We identified two molecular events that targeted the LAC construct in the evolved strain: a 1,593-bp deletion in the intergenic region (promoter) between LAC4 and LAC12 and a decrease of the plasmid copy number by about 10-fold compared to that in the original recombinant. The results suggest that the intact promoter was unable to mediate the induction of the transcription of LAC4 and LAC12 by lactose in the original recombinant and that the deletion established the transcriptional induction of both genes in the evolved strain. We propose that the tuning of the expression of the heterologous LAC genes in the evolved recombinant was accomplished by the interplay between the decreased copy number of both genes and the different levels of transcriptional induction for LAC4 and LAC12 resulting from the changed promoter structure. Nevertheless, our results do not exclude other possible mutations that may have contributed to the improved lactose fermentation phenotype. This study illustrates the usefulness of simple evolutionary engineering approaches in strain improvement. The evolved strain efficiently fermented threefold-concentrated cheese whey, providing an attractive alternative for the fermentation of lactose-based media.

1994 ◽  
Vol 14 (9) ◽  
pp. 6306-6316 ◽  
Author(s):  
A R Butler ◽  
J H White ◽  
Y Folawiyo ◽  
A Edlin ◽  
D Gardiner ◽  
...  

The Kluyveromyces lactis toxin causes an arrest of sensitive yeast cells in the G1 phase of the cell division cycle. Two complementary genetic approaches have been undertaken in the yeast Saccharomyces cerevisiae to understand the mode of action of this toxin. First, two sequences conferring toxin resistance specifically in high copy number have been isolated and shown to encode a tRNA(Glu3) and a novel polypeptide. Disruption of the latter sequence in the yeast genome conferred toxin resistance and revealed that it was nonessential, while the effect of the tRNA(Glu)3 was highly specific and mediated resistance by affecting the toxin's target. An alpha-specific, copy number-independent suppressor of toxin sensitivity was also isolated and identified as MATa, consistent with the observation that diploid cells are partially resistant to the toxin. Second, in a comprehensive screen for toxin-resistant mutants, representatives of 13 complementation groups have been obtained and characterized to determine whether they are altered in the toxin's intracellular target. Of 10 genes found to affect the target process, one (KTI12) was found to encode the novel polypeptide previously identified as a multicopy resistance determinant. Thus, both loss of KTI12 function and elevated KTI12 copy number can cause resistance to the K. lactis toxin.


1994 ◽  
Vol 14 (9) ◽  
pp. 6306-6316
Author(s):  
A R Butler ◽  
J H White ◽  
Y Folawiyo ◽  
A Edlin ◽  
D Gardiner ◽  
...  

The Kluyveromyces lactis toxin causes an arrest of sensitive yeast cells in the G1 phase of the cell division cycle. Two complementary genetic approaches have been undertaken in the yeast Saccharomyces cerevisiae to understand the mode of action of this toxin. First, two sequences conferring toxin resistance specifically in high copy number have been isolated and shown to encode a tRNA(Glu3) and a novel polypeptide. Disruption of the latter sequence in the yeast genome conferred toxin resistance and revealed that it was nonessential, while the effect of the tRNA(Glu)3 was highly specific and mediated resistance by affecting the toxin's target. An alpha-specific, copy number-independent suppressor of toxin sensitivity was also isolated and identified as MATa, consistent with the observation that diploid cells are partially resistant to the toxin. Second, in a comprehensive screen for toxin-resistant mutants, representatives of 13 complementation groups have been obtained and characterized to determine whether they are altered in the toxin's intracellular target. Of 10 genes found to affect the target process, one (KTI12) was found to encode the novel polypeptide previously identified as a multicopy resistance determinant. Thus, both loss of KTI12 function and elevated KTI12 copy number can cause resistance to the K. lactis toxin.


2008 ◽  
Vol 72 (3) ◽  
pp. 379-412 ◽  
Author(s):  
Elke Nevoigt

SUMMARY The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter Higgins ◽  
Cooper A Grace ◽  
Soon A Lee ◽  
Matthew R Goddard

Abstract Saccharomyces cerevisiae is extensively utilized for commercial fermentation, and is also an important biological model; however, its ecology has only recently begun to be understood. Through the use of whole-genome sequencing, the species has been characterized into a number of distinct subpopulations, defined by geographical ranges and industrial uses. Here, the whole-genome sequences of 104 New Zealand (NZ) S. cerevisiae strains, including 52 novel genomes, are analyzed alongside 450 published sequences derived from various global locations. The impact of S. cerevisiae novel range expansion into NZ was investigated and these analyses reveal the positioning of NZ strains as a subgroup to the predominantly European/wine clade. A number of genomic differences with the European group correlate with range expansion into NZ, including 18 highly enriched single-nucleotide polymorphism (SNPs) and novel Ty1/2 insertions. While it is not possible to categorically determine if any genetic differences are due to stochastic process or the operations of natural selection, we suggest that the observation of NZ-specific copy number increases of four sugar transporter genes in the HXT family may reasonably represent an adaptation in the NZ S. cerevisiae subpopulation, and this correlates with the observations of copy number changes during adaptation in small-scale experimental evolution studies.


Genome ◽  
1988 ◽  
Vol 30 (5) ◽  
pp. 690-696 ◽  
Author(s):  
Wendy H. Horsfall ◽  
Ronald E. Pearlman

Genomic libraries containing micronuclear DNA sequences from Tetrahymena thermophila have been constructed in a vector containing ARS1, SUP11, and ura3 sequences from the yeast Saccharomyces cerevisiae. When transformed into a strain of S. cerevisiae carrying a suppressible ochre mutation in the ade2 gene, viable transformants are obtained only if the transforming plasmid is maintained at a copy number of one or two per cell. Mitotic segregation of the plasmid is easily assessed in a colour assay of transformants. Using this assay system, we showed that micronuclear DNA from Tetrahymena does not contain sequences that confer mitotic stability on yeast ARS-containing plasmids; i.e., sequences that function analogously to yeast centromere sequences. One transformant was analyzed that carries Tetrahymena sequences that maintain the copy number of the ARS plasmid at one or two per cell. However, these sequences do not confer mitotic stability on the transformants and they confer a phenotype in this assay similar to that of the REP3 gene of the yeast 2 μm plasmid.Key words: mitotic stability, centromere, Tetrahymena, Saccharomyces.


Sign in / Sign up

Export Citation Format

Share Document