saccharomyces pastorianus
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 40)

H-INDEX

22
(FIVE YEARS 4)

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 170
Author(s):  
Lăcrămioara Rusu ◽  
Cristina-Gabriela Grigoraș ◽  
Andrei-Ionuț Simion ◽  
Elena-Mirela Suceveanu ◽  
Alexandra-Cristina Blaga ◽  
...  

Pharmaceuticals are recognized as emerging water microcontaminants that have been reported in several aquatic environments worldwide; therefore, the elimination of these pollutants is a global challenge. This study aimed to develop a biosorbent based on Saccharomyces pastorianus residual biomass encapsulated in a calcium alginate matrix and to evaluate its biosorption performance to remove Ethacridine Lactate (EL) from aqueous solutions. Firstly, the synthesis and characterization of biosorbent has been carried out. Then, the impact of main parameters on biosorption process were investigated by batch experiments. Finally, the kinetics behavior and equilibrium isotherms were evaluated. The resulted beads have an irregular and elongated shape with about 1.89 mm ± 0.13 mm in size with a homogeneous structure. The best removal efficiency for EL of over 85% was obtained at acidic pH 2 and 25 °C for 50 mg/L initial concentration and 2 g/L biosorbent dose. The pseudo-second-order and intraparticle diffusion kinetics describe the biosorption process. The maximum calculated biosorption capacity was 21.39 mg/g similar to that recorded experimentally. The equilibrium biosorption data were a good fit for Freundlich and Dubinin–Radushkevich isotherms. Our findings reveal that the low cost and eco-friendly obtained biosorbent can be easily synthesized and suitable to remove Ethacridine Lactate from water matrices.


2021 ◽  
Author(s):  
Roberto de la Cerda ◽  
Karsten Hookamp ◽  
Fiona Roche ◽  
Georgia Thompson ◽  
Soukaina Timouma ◽  
...  

The lager yeasts, Saccharomyces pastorianus, are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus and are divided into two broad groups, Group I and II. The two groups evolved from at least one common hybridisation event but have subsequently diverged with Group I strains losing many S. cerevisiae chromosomes while the Group II strains retain both sub-genomes. The complex genomes, containing orthologous alleles from the parental chromosomes, pose interesting questions regarding gene regulation and its impact on the fermentation properties of the strains. Superimposed on the presence of orthologous alleles are complexities of gene dosage due to the aneuploid nature of the genomes. We examined the contribution of the S. cerevisiae and S. eubayanus alleles to the gene expression patterns of Group I and II strains during fermentation. We show that the relative expression of S. cerevisiae and S. eubayanus orthologues is positively correlated with gene copy number. Despite the reduced S. cerevisiae content in the Group I strain, S. cerevisiae orthologues contribute to biochemical pathways upregulated during fermentation which may explain the retention of specific chromosomes in the strain. Conversely, S. eubayanus genes are significantly overrepresented in the upregulated gene pool in the Group II strain. Comparison of the transcription profiles of Group I and II strains during fermentation identified both common and unique gene expression patterns, with gene copy number being a dominant contributory factor. Thus, the aneuploid genomes create complex patterns of gene expression during fermentation with gene dosage playing a crucial role both within and between strains.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1237
Author(s):  
Iuliana Diana Bărbulescu ◽  
Mihaela Violeta Ghica ◽  
Mihaela Begea ◽  
Mădălina Georgiana Albu Kaya ◽  
Răzvan Ionuț Teodorescu ◽  
...  

Yeast (including brewing yeast) and yeast-based preparations derived from bioprocesses or agroindustrial byproducts represent valuable feed additives and ingredients for ruminants. The optimization of brewing yeast biotechnological processing through fermentation mediated by the brewing yeast strain Saccharomyces pastorianus ssp. carlsbergensis W34/70 was investigated. The cultivation conditions (temperature, pH, carbon source, and nitrogen source) were selected and designed according to a Taguchi fractional experimental plan, with four factors on three levels, and their influence on the evolution of the bioprocess of obtaining the brewing yeast biomass was evaluated. The dependent variables were the yeast biomass amount in wet form, yeast biomass amount in dried form after lyophilization, dried yeast biomass wettability assayed through the contact angle (CA), protein content (PC), and dry matter content (DS). The effects that the experimental conditions had on the system responses were visualized in tridimensional space using the response surface methodology, and the combination of biotechnological parameters that ensured process quality and robustness was then determined using the Taguchi technique through its performance indicator, i.e., the signal-to-noise ratio. By optimizing the biotechnological parameters, this study provides a valuable contribution in the area of brewing yeast biomass processing, with the aim of producing probiotic yeast for ruminant nutrition.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4314
Author(s):  
Daniela Suteu ◽  
Alexandra Cristina Blaga ◽  
Ramona Cimpoesu ◽  
Adrian Cătălin Puiţel ◽  
Ramona-Elena Tataru-Farmus

Natural polymers have proven to be extremely interesting matrices for the immobilization of microbial biomasses, via various mechanisms, in order to bring them into a form easier to handle—the form of composites. This article aimed to study composites based on a residual microbial biomass immobilized in sodium alginate via an encapsulation technique as materials with adsorbent properties. Thus, this study focused on the residual biomass resulting from beer production (Saccharomyces pastorianus yeast, separated after the biosynthesis process by centrifugation and dried at 80 °C)—an important source of valuable compounds, used either as a raw material or for transformation into final products with added value. Thus, the biosorptive potential of this type of composite was tested—presenting in the form of spherical microcapsules 900 and 1500 μm in diameter—in a biosorption process applied to aqueous solutions containing the reactive dye Brilliant Red HE-3B (16.88–174.08 mg/L), studied in a batch system. The preparation and characterization of the obtained polymeric composites (pHPZC, SEM, EDS and FTIR spectra) and an analysis of different equilibrium isotherms (Langmuir, Freundlich and Dubinin-Radushkevich—D–R) were investigated in order to estimate the quantitative characteristic parameters of the biosorption process, its thermal effects, and its possible mechanisms of action. The modelling of the experimental data led to the conclusion that the studied biosorption process took place after reaching the Langmuir isotherm (LI), and that the main mechanism was possibly physical, being spontaneous and probably exothermic according to the values obtained for the free energy of biosorption (E = 8.45–13.608 kJ/mol, from the DR equation), as well as the negative values for the Gibbs free energy and the enthalpy of biosorption (ΔH0 = −87.795 kJ/mol). The results obtained lead to the conclusion that encapsulation of this residual microbial biomass in sodium alginate leads to an easier-to-handle form of biomass, thus being an efficient biosorbent for static or dynamic operating systems for effluents containing moderate concentrations of reactive organic dyes.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1628
Author(s):  
Massimo Iorizzo ◽  
Francesco Letizia ◽  
Gianluca Albanese ◽  
Francesca Coppola ◽  
Angelita Gambuti ◽  
...  

Saccharomyces pastorianus, genetic hybrids of Saccharomyces cerevisiae and the Saccharomyces eubayanus, is one of the most widely used lager yeasts in the brewing industry. In recent years, new strategies have been adopted and new lines of research have been outlined to create and expand the pool of lager brewing starters. The vineyard microbiome has received significant attention in the past few years due to many opportunities in terms of biotechnological applications in the winemaking processes. However, the characterization of S. cerevisiae strains isolated from winery environments as an approach to selecting starters for beer production has not been fully investigated, and little is currently available. Four wild cryotolerant S. cerevisiae strains isolated from vineyard environments were evaluated as potential starters for lager beer production at laboratory scale using a model beer wort (MBW). In all tests, the industrial lager brewing S. pastorianus Weihenstephan 34/70 was used as a reference strain. The results obtained, although preliminary, showed some good properties of these strains, such as antioxidant activity, flocculation capacity, efficient fermentation at 15 °C and low diacetyl production. Further studies will be carried out using these S. cerevisiae strains as starters for lager beer production on a pilot scale in order to verify the chemical and sensory characteristics of the beers produced.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4810
Author(s):  
Lăcrămioara Rusu ◽  
Cristina-Gabriela Grigoraș ◽  
Elena Mirela Suceveanu ◽  
Andrei-Ionuț Simion ◽  
Andreea Veronica Dediu Botezatu ◽  
...  

Pharmaceuticals and dyes are a very important part of the nonbiodegradable or hard biodegradable substances present in wastewater. Microorganisms are already known to be effective biosorbents, but the use of free microbial cells involves difficulties in their separation from effluents and limits their application in wastewater treatment. Thus, this study aimed to develop biosorbents by immobilizing Saccharomyces cerevisiae, Saccharomyces pastorianus and Saccharomyces pastorianus residual biomass on natural polymers (alginate and chitosan) and to evaluate the biosorptive potential for removal of pharmaceuticals and dyes from water. Six types of biosorbents were synthesized and characterized by Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy techniques and their biosorptive capacities for three drugs (cephalexin, rifampicin, ethacridine lactate) and two dyes (orange II and indigo carmine) were evaluated. The obtained results show that the removal efficiency depends on the polymer type used for the immobilization. In case of alginate the removal efficiency is between 40.05% and 96.41% for drugs and between 27.83% and 58.29% for dyes, while in the case of chitosan it is between 40.83% and 77.92% for drugs and between 17.17% and 44.77% for dyes. In general, the synthesized biosorbents proved to be promising for the removal of drugs and dyes from aqueous solutions.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 272
Author(s):  
Kazumichi Yokota ◽  
Asae Takeo ◽  
Hiroko Abe ◽  
Yuji Kurokawa ◽  
Muneaki Hashimoto ◽  
...  

Traceability analysis, such as identification and discrimination of yeasts used for fermentation, is important for ensuring manufacturing efficiency and product safety during brewing. However, conventional methods based on morphological and physiological properties have disadvantages such as time consumption and low sensitivity. In this study, the resistive pulse method (RPM) was employed to discriminate between Saccharomyces pastorianus and Dekkera anomala and S. pastorianus and D. bruxellensis by measuring the ionic current response of cells flowing through a microsized pore. The height and shape of the pulse signal were used for the simultaneous measurement of the size, shape, and surface charge of individual cells. Accurate discrimination of S. pastorianus from Dekkera spp. was observed with a recall rate of 96.3 ± 0.8%. Furthermore, budding S. pastorianus was quantitatively detected by evaluating the shape of the waveform of the current ionic blockade. We showed a proof-of-concept demonstration of RPM for the detection of contamination of Dekkera spp. in S. pastorianus and for monitoring the fermentation of S. pastorianus through the quantitative detection of budding cells.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Daniel Schwendenwein ◽  
Anna K. Ressmann ◽  
Marcello Entner ◽  
Viktor Savic ◽  
Margit Winkler ◽  
...  

In this study, we present the synthesis of chiral fragrance aldehydes, which was tackled by a combination of chemo-catalysis and a multi-enzymatic in vivo cascade reaction and the development of a highly versatile high-throughput assay for the enzymatic reduction of carboxylic acids. We investigated a biocompatible metal-catalyzed synthesis for the preparation of α or β substituted cinnamic acid derivatives which were fed directly into the biocatalytic system. Subsequently, the target molecules were synthesized by an enzymatic cascade consisting of a carboxylate reduction, followed by the selective C-C double bond reduction catalyzed by appropriate enoate reductases. We investigated a biocompatible oxidative Heck protocol and combined it with cells expressing a carboxylic acid reductase from Neurospora crassa (NcCAR) and an ene reductase from Saccharomyces pastorianus for the production fragrance aldehydes.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4232
Author(s):  
Chien-Hui Wu ◽  
Chung-Hsiung Huang ◽  
Ming-Chuan Chung ◽  
Shun-Hsien Chang ◽  
Guo-Jane Tsai

Although the hypoglycemic potential of brewer’s yeast extract has been reported, there is limited information pertaining to the hypoglycemic ingredients of Saccharomyces pastorianus extract and their mechanisms of action available. This study aimed to investigate the in vivo and in vitro hypoglycemic effect of S. pastorianus extract and to elucidate its molecular mechanisms. S. pastorianus extract was mainly composed of proteins followed by carbohydrates. In diabetic rats, oral administration of S. pastorianus extract significantly reduced the levels of plasma glucose and enhanced the activity of hepatic glucose-6-phosphatase dehydrogenase. Treatment with S. pastorianus extract increased the localization of type 4 glucose transporter (GLUT4), PTP, and insulin receptor at 3T3-L1 cell membranes and raised the levels of P38 MAPK, PI3K, and AKT in the cytosol. In agreement with these results, pretreatment of 3T3-L1 cells with inhibitors of PTP, PI3K, Akt/PKB, and p38 MAPK inhibited glucose uptake induced by application of S. pastorianus extract. Most importantly, a 54 kDa protein with hypoglycemic activity was identified and suggested as the major ingredient contributing to the hypoglycemic activity of S. pastorianus extract. In summary, these results clearly confirm the hypoglycemic activity of S. pastorianus extract and provide critical insights into the underlying molecular mechanisms.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 107
Author(s):  
Javier Porcayo Loza ◽  
Anna Chailyan ◽  
Jochen Forster ◽  
Michael Katz ◽  
Uffe Hasbro Mortensen ◽  
...  

Approximately 25% of all carbohydrates in industrial worts are poorly, if at all, fermented by brewing yeast. This includes dextrins, β-glucans, arabinose, xylose, disaccharides such as isomaltose, nigerose, kojibiose, and trisaccharides such as panose and isopanose. As the efficient utilization of carbohydrates during the wort’s fermentation impacts the alcohol yield and the organoleptic traits of the product, developing brewing strains with enhanced abilities to ferment subsets of these sugars is highly desirable. In this study, we developed Saccharomyces pastorianus laboratory yeast strains with a superior capacity to grow on isomaltose and panose. First, we designed a plasmid toolbox for the stable integration of genes into lager strains. Next, we used the toolbox to elevate the levels of the α-glucoside transporter Agt1 and the major isomaltase Ima1. This was achieved by integrating synthetic AGT1 and IMA1 genes under the control of strong constitutive promoters into defined genomic sites. As a result, strains carrying both genes showed a superior capacity to grow on panose and isomaltose, indicating that Ima1 and Agt1 act in synergy to consume these sugars. Our study suggests that non-GMO strategies aiming to develop strains with improved isomaltose and panose utilization could include identifying strains that overexpress AGT1 and IMA1.


Sign in / Sign up

Export Citation Format

Share Document