scholarly journals Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis

2017 ◽  
Vol 252 ◽  
pp. 15-26 ◽  
Author(s):  
Gandhi Rádis-Baptista ◽  
Iana S. Campelo ◽  
Jean-Étienne R.L. Morlighem ◽  
Luciana M. Melo ◽  
Vicente J.F. Freitas
2012 ◽  
Vol 9 (7) ◽  
pp. 823-836 ◽  
Author(s):  
Taavi Lehto ◽  
Kaido Kurrikoff ◽  
Ülo Langel

2016 ◽  
Vol 31 (3) ◽  
pp. 975-988 ◽  
Author(s):  
Carmen Juks ◽  
Annely Lorents ◽  
Piret Arukuusk ◽  
Ülo Langel ◽  
Margus Pooga

2017 ◽  
Vol 9 ◽  
pp. 162-169 ◽  
Author(s):  
Bénédicte Ndeboko ◽  
Narayan Ramamurthy ◽  
Guy Joseph Lemamy ◽  
Catherine Jamard ◽  
Peter E. Nielsen ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Yue-Wern Huang ◽  
Han-Jung Lee ◽  
Larry M. Tolliver ◽  
Robert S. Aronstam

Many viral and nonviral systems have been developed to aid delivery of biologically active molecules into cells. Among these, cell-penetrating peptides (CPPs) have received increasing attention in the past two decades for biomedical applications. In this review, we focus on opportunities and challenges associated with CPP delivery of nucleic acids and nanomaterials. We first describe the nature of versatile CPPs and their interactions with various types of cargoes. We then discussin vivoandin vitrodelivery of nucleic acids and nanomaterials by CPPs. Studies on the mechanisms of cellular entry and limitations in the methods used are detailed.


2018 ◽  
Author(s):  
V. Lafarga ◽  
O. Sirozh ◽  
I. Díaz-López ◽  
M. Hisaoka ◽  
E. Zarzuela ◽  
...  

ABSTRACTDue to their capability to transport chemicals or proteins into target cells, cell-penetrating peptides (CPPs) are being developed as therapy delivery tools. However, and despite their interesting properties, arginine-rich CPPs often show toxicity for reasons that remain poorly understood. Using a (PR)n dipeptide repeat that has been linked to amyotrophic-lateral sclerosis (ALS) as a model of an arginine-rich CPP, we here show that the presence of (PR)n leads to a generalized displacement of RNA- and DNA-binding proteins from chromatin and mRNA. Accordingly, any reaction involving nucleic acids such as RNA transcription, translation, splicing and degradation or DNA replication and repair are impaired by the presence of the CPP. Interestingly, the effects of (PR)n are fully mimicked by PROTAMINE, a small arginine-rich protein that displaces histones from chromatin during spermatogenesis. We propose that widespread coating of nucleic acids and consequent displacement of RNA- and DNA-binding factors from chromatin and mRNA accounts for the toxicity of arginine-rich CPPs, including those that have been recently associated to the onset of ALS.


2021 ◽  
Vol 14 (7) ◽  
pp. 667
Author(s):  
Annely Lorents ◽  
Maria Maloverjan ◽  
Kärt Padari ◽  
Margus Pooga

Nucleic acid molecules can be transferred into cells to alter gene expression and, thus, alleviate certain pathological conditions. Cell-penetrating peptides (CPPs) are vectors that can be used for transfecting nucleic acids as well as many other compounds. CPPs associate nucleic acids non-covalently, forming stable nanoparticles and providing efficient transfection of cells in vitro. However, in vivo, expected efficiency is achieved only in rare cases. One of the reasons for this discrepancy is the formation of protein corona around nanoparticles, once they are exposed to a biological environment, e.g., blood stream. In this study, we compared protein corona of CPP-nucleic acid nanoparticles formed in the presence of bovine, murine and human serum. We used Western blot and mass-spectrometry to identify the major constituents of protein corona forming around nanoparticles, showing that proteins involved in transport, haemostasis and complement system are its major components. We investigated physical features of nanoparticles and measured their biological efficiency in splice-correction assay. We showed that protein corona constituents might alter the fate of nanoparticles in vivo, e.g., by subjecting them to phagocytosis. We demonstrated that composition of protein corona of nanoparticles is species-specific that leads to dissimilar transfection efficiency and should be considered while developing delivery systems for nucleic acids.


2005 ◽  
Vol 38 (4) ◽  
pp. 345-350 ◽  
Author(s):  
Peter E. Nielsen

1. Introduction 3452. Peptide nucleic acid (PNA) 3463. ‘Cell penetrating peptides’ (CPPs) 3464. Endosomal escape 3475. Cellular delivery of PNA 3476.In vivobioavailability of PNA 3497. References 350Recent results on the cellular delivery of antisense peptide nucleic acids (PNA) via peptide conjugation is briefly discussed, in particular in the context of endosomal entrapment and escape.


2021 ◽  
Author(s):  
Annely Lorents ◽  
Maria Maloverjan ◽  
Kärt Padari ◽  
Margus Pooga

Nucleic acid molecules can be transferred into cells to alter gene expression and, thus, alleviate certain pathological conditions. Cell-penetrating peptides (CPPs) are vectors that can be used for transfecting nucleic acids as well as many other compounds. CPPs associate nucleic acids non-covalently, forming stable nanoparticles and providing efficient transfection of cells in vitro. However, in vivo, expected efficiency is achieved only in rare cases. One of the reasons for this discrepancy is formation of protein corona around nanoparticles, once they are exposed to a biological environment, e.g. blood stream. In this study, we compared CPP-nucleic acid nanoparticles formed in the presence of bovine, murine and human serum. We used Western blot and mass-spectrometry to identify the major constituents of protein corona forming around nanoparticles, showing that proteins involved in transport, haemostasis and complement system are its major components. We investigated physical features of nanoparticles, and measured their biological efficiency in splice-correction assay. We showed that protein corona constituents might alter the fate of nanoparticles in vivo, e.g. by subjecting them to phagocytosis. We demonstrated that composition of protein corona of nanoparticles is species-specific that leads to dissimilar transfection efficiency and should be taken into account while developing delivery systems for nucleic acids.


Sign in / Sign up

Export Citation Format

Share Document