dna binding factors
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 8)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Melanie R. Müller ◽  
Aaron Burmeister ◽  
Margaretha A. Skowron ◽  
Alexa Stephan ◽  
Felix Bremmer ◽  
...  

Abstract Background Type II germ cell tumors (GCT) are the most common solid cancers in males of age 15 to 35 years. Treatment of these tumors includes cisplatin-based therapy achieving high cure rates, but also leading to late toxicities. As mainly young men are suffering from GCTs, late toxicities play a major role regarding life expectancy, and the development of therapy resistance emphasizes the need for alternative therapeutic options. GCTs are highly susceptible to interference with the epigenetic landscape; therefore, this study focuses on screening of drugs against epigenetic factors as a treatment option for GCTs. Results We present seven different epigenetic inhibitors efficiently decreasing cell viability in GCT cell lines including cisplatin-resistant subclones at low concentrations by targeting epigenetic modifiers and interactors, like histone deacetylases (Quisinostat), histone demethylases (JIB-04), histone methyltransferases (Chaetocin), epigenetic readers (MZ-1, LP99) and polycomb-repressive complexes (PRT4165, GSK343). Mass spectrometry-based analyses of the histone modification landscape revealed effects beyond the expected mode-of-action of each drug, suggesting a wider spectrum of activity than initially assumed. Moreover, we characterized the effects of each drug on the transcriptome of GCT cells by RNA sequencing and found common deregulations in gene expression of ion transporters and DNA-binding factors. A kinase array revealed deregulations of signaling pathways, like cAMP, JAK-STAT and WNT. Conclusion Our study identified seven drugs against epigenetic modifiers to treat cisplatin-resistant GCTs. Further, we extensively analyzed off-target effects and modes-of-action, which are important for risk assessment of the individual drugs.


2020 ◽  
Vol 21 (24) ◽  
pp. 9501
Author(s):  
Jun Wang ◽  
Gang Greg Wang

Enhancer of zeste homolog 2 (EZH2) plays critical roles in a range of biological processes including organ development and homeostasis, epigenomic and transcriptomic regulation, gene repression and imprinting, and DNA damage repair. A widely known function of EZH2 is to serve as an enzymatic subunit of Polycomb repressive complex 2 (PRC2) and catalyze trimethylation of histone H3 lysine 27 (H3K27me3) for repressing target gene expression. However, an increasing body of evidence demonstrates that EZH2 has many “non-conventional” functions that go beyond H3K27 methylation as a Polycomb factor. First, EZH2 can methylate a number of nonhistone proteins, thereby regulating cellular processes in an H3K27me3-independent fashion. Furthermore, EZH2 relies on both methyltransferase-dependent and methyltransferase-independent mechanisms for modulating gene-expression programs and/or epigenomic patterns of cells. Importantly, independent of PRC2, EZH2 also forms physical interactions with a number of DNA-binding factors and transcriptional coactivators to context-dependently influence gene expression. The purpose of this review is to detail the complex, noncanonical roles of EZH2, which are generally less appreciated in gene and (epi)genome regulation. Because EZH2 deregulation is prevalent in human diseases such as cancer, there is increased dependency on its noncanonical function, which shall have important implications in developing more effective therapeutics.


2020 ◽  
Vol 48 (19) ◽  
pp. 10877-10889 ◽  
Author(s):  
Yaxin Yu ◽  
Robert M Yarrington ◽  
David J Stillman

Abstract The Saccharomyces cerevisiae HO gene is a model regulatory system with complex transcriptional regulation. Budding yeast divide asymmetrically and HO is expressed only in mother cells where a nucleosome eviction cascade along the promoter during the cell cycle enables activation. HO expression in daughter cells is inhibited by high concentration of Ash1 in daughters. To understand how Ash1 represses transcription, we used a myo4 mutation which boosts Ash1 accumulation in both mothers and daughters and show that Ash1 inhibits promoter recruitment of SWI/SNF and Gcn5. We show Ash1 is also required for the efficient nucleosome repopulation that occurs after eviction, and the strongest effects of Ash1 are seen when Ash1 has been degraded and at promoter locations distant from where Ash1 bound. Additionally, we defined a specific nucleosome/nucleosome-depleted region structure that restricts HO activation to one of two paralogous DNA-binding factors. We also show that nucleosome eviction occurs bidirectionally over a large distance. Significantly, eviction of the more distant nucleosomes is dependent upon the FACT histone chaperone, and FACT is recruited to these regions when eviction is beginning. These last observations, along with ChIP experiments involving the SBF factor, suggest a long-distance loop transiently forms at the HO promoter.


2020 ◽  
Author(s):  
Sneha Mitra ◽  
Jianling Zhong ◽  
David M. MacAlpine ◽  
Alexander J. Hartemink

AbstractChromatin is the tightly packaged structure of DNA and protein within the nucleus of a cell. The arrangement of different protein complexes along the DNA modulates and is modulated by gene expression. Measuring the binding locations and level of occupancy of different transcription factors (TFs) and nucleosomes is therefore crucial to understanding gene regulation. Antibody-based methods for assaying chromatin occupancy are capable of identifying the binding sites of specific DNA binding factors, but only one factor at a time. On the other hand, epigenomic accessibility data like ATAC-seq, DNase-seq, and MNase-seq provide insight into the chromatin landscape of all factors bound along the genome, but with minimal insight into the identities of those factors. Here, we present RoboCOP, a multivariate state space model that integrates chromatin information from epigenomic accessibility data with nucleotide sequence to compute genome-wide probabilistic scores of nucleosome and TF occupancy, for hundreds of different factors at once. We apply RoboCOP to MNase-seq data to elucidate the protein-binding landscape of nucleosomes and 150 TFs across the yeast genome. Using available protein-binding datasets from the literature, we show that our model predicts the binding of these factors genome-wide more accurately than existing methods.


2020 ◽  
Author(s):  
Bobbie Pelham-Webb ◽  
Alexander Polyzos ◽  
Luke Wojenski ◽  
Andreas Kloetgen ◽  
Jiexi Li ◽  
...  

ABSTRACTThe identity of dividing cells is challenged during mitosis, as transcription is halted and chromatin architecture drastically altered. How cell type-specific gene expression and genomic organization are faithfully reset upon G1 entry in daughter cells remains elusive. To address this issue, we characterized at a genome-wide scale the dynamic transcriptional and architectural resetting of mouse pluripotent stem cells (PSCs) upon mitotic exit. This revealed distinct patterns of transcriptional reactivation with rapid induction of stem cell genes and their enhancers, a more gradual recovery of metabolic and cell cycle genes, and a weak and transient activation of lineage-specific genes only during G1. Topological reorganization also occurred in an asynchronous manner and associated with the levels and kinetics of transcriptional reactivation. Chromatin interactions around active promoters and enhancers, and particularly super enhancers, reformed at a faster rate than CTCF/Cohesin-bound structural loops. Interestingly, regions with mitotic retention of the active histone mark H3K27ac and/or specific DNA binding factors showed faster transcriptional and architectural resetting, and chemical inhibition of H3K27 acetylation specifically during mitosis abrogated rapid reactivation of H3K27ac-bookmarked genes. Finally, we observed a contact between the promoter of an endoderm master regulator, Gata6, and a novel enhancer which was preestablished in PSCs and preserved during mitosis. Our study provides an integrative map of the topological and transcriptional changes that lead to the resetting of pluripotent stem cell identity during mitotic exit, and reveals distinct patterns and features that balance the dual requirements for self-renewal and differentiation.


2020 ◽  
Vol 6 (13) ◽  
pp. eaaz3152
Author(s):  
Olga Kyrchanova ◽  
Oksana Maksimenko ◽  
Airat Ibragimov ◽  
Vladimir Sokolov ◽  
Nikolay Postika ◽  
...  

In mammals, a C2H2 zinc finger (C2H2) protein, CTCF, acts as the master regulator of chromosomal architecture and of the expression of Hox gene clusters. Like mammalian CTCF, the Drosophila homolog, dCTCF, localizes to boundaries in the bithorax complex (BX-C). Here, we have determined the minimal requirements for the assembly of a functional boundary by dCTCF and two other C2H2 zinc finger proteins, Pita and Su(Hw). Although binding sites for these proteins are essential for the insulator activity of BX-C boundaries, these binding sites alone are insufficient to create a functional boundary. dCTCF cannot effectively bind to a single recognition sequence in chromatin or generate a functional insulator without the help of additional proteins. In addition, for boundary elements in BX-C at least four binding sites for dCTCF or the presence of additional DNA binding factors is required to generate a functional insulator.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
A. L. Colclough ◽  
J. Scadden ◽  
J. M. A. Blair

Abstract Background TetR-family transcriptional regulators (TFTRs) are DNA binding factors that regulate gene expression in bacteria. Well-studied TFTRs, such as AcrR, which regulates efflux pump expression, are usually encoded alongside target operons. Recently, it has emerged that there are many TFTRs which act as global multi-target regulators. Our classical view of TFTRs as simple, single-target regulators therefore needs to be reconsidered. As some TFTRs regulate essential processes (e.g. metabolism) or processes which are important determinants of resistance and virulence (e.g. biofilm formation and efflux gene expression) and as TFTRs are present throughout pathogenic bacteria, they may be good drug discovery targets for tackling antimicrobial resistant infections. However, the prevalence and conservation of individual TFTR genes in Gram-negative species, has to our knowledge, not yet been studied. Results Here, a wide-scale search for TFTRs in available proteomes of clinically relevant pathogens Salmonella and Escherichia species was performed and these regulators further characterised. The majority of identified TFTRs are involved in efflux regulation in both Escherichia and Salmonella. The percentage variance in TFTR genes of these genera was found to be higher in those regulating genes involved in efflux, bleach survival or biofilm formation than those regulating more constrained processes. Some TFTRs were found to be present in all strains and species of these two genera, whereas others (i.e. TetR) are only present in some strains and some (i.e. RamR) are genera-specific. Two further pathogens on the WHO priority pathogen list (K. pneumoniae and P. aeruginosa) were then searched for the presence of the TFTRs conserved in Escherichia and Salmonella. Conclusions Through bioinformatics and literature analyses, we present that TFTRs are a varied and heterogeneous family of proteins required for the regulation of numerous important processes, with consequences to antimicrobial resistance and virulence, and that the roles and responses of these proteins are frequently underestimated.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1156 ◽  
Author(s):  
Sangho Lee ◽  
Hoon Jang ◽  
Sohyeon Moon ◽  
Ok-Hee Lee ◽  
Sujin Lee ◽  
...  

Spermatogenesis is a process by which haploid cells differentiate from germ cells in the seminiferous tubules of the testes. TLE3, a transcriptional co-regulator that interacts with DNA-binding factors, plays a role in the development of somatic cells. However, no studies have shown its role during germ cell development in the testes. Here, we examined TLE3 expression in the testes during spermatogenesis. TLE3 was highly expressed in mouse testes and was dynamically regulated in different cell types of the seminiferous tubules, spermatogonia, spermatids, and Sertoli cells, but not in the spermatocytes. Interestingly, TLE3 was not detected in Sertoli cells on postnatal day 7 (P7) but was expressed from P10 onward. The microarray analysis showed that the expression of numerous genes changed upon TLE3 knockdown in a Sertoli cell line TM4. These include 1597 up-regulated genes and 1452 down-regulated genes in TLE3-knockdown TM4 cells. Ingenuity Pathway Analysis (IPA) showed that three factors were up-regulated and two genes were down-regulated upon TLE3 knockdown in TM4 cells. The abnormal expression of the three factors is associated with cellular malfunctions such as abnormal differentiation and Sertoli cell formation. Thus, TLE3 is differentially expressed in Sertoli cells and plays a crucial role in regulating cell-specific genes involved in the differentiation and formation of Sertoli cells during testicular development.


2018 ◽  
Author(s):  
V. Lafarga ◽  
O. Sirozh ◽  
I. Díaz-López ◽  
M. Hisaoka ◽  
E. Zarzuela ◽  
...  

ABSTRACTDue to their capability to transport chemicals or proteins into target cells, cell-penetrating peptides (CPPs) are being developed as therapy delivery tools. However, and despite their interesting properties, arginine-rich CPPs often show toxicity for reasons that remain poorly understood. Using a (PR)n dipeptide repeat that has been linked to amyotrophic-lateral sclerosis (ALS) as a model of an arginine-rich CPP, we here show that the presence of (PR)n leads to a generalized displacement of RNA- and DNA-binding proteins from chromatin and mRNA. Accordingly, any reaction involving nucleic acids such as RNA transcription, translation, splicing and degradation or DNA replication and repair are impaired by the presence of the CPP. Interestingly, the effects of (PR)n are fully mimicked by PROTAMINE, a small arginine-rich protein that displaces histones from chromatin during spermatogenesis. We propose that widespread coating of nucleic acids and consequent displacement of RNA- and DNA-binding factors from chromatin and mRNA accounts for the toxicity of arginine-rich CPPs, including those that have been recently associated to the onset of ALS.


2018 ◽  
Author(s):  
Mónica P. Gutiérrez ◽  
Heather K. MacAlpine ◽  
David M. MacAlpine

AbstractProper regulation and maintenance of the epigenome is necessary to preserve genome function. However, in every cell division, the epigenetic state is disassembled and then re-assembled in the wake of the DNA replication fork. Chromatin restoration on nascent DNA is a complex and regulated process that includes nucleosome assembly and remodeling, deposition of histone variants, and the re-establishment of transcription factor binding. To study the genome-wide dynamics of chromatin restoration behind the DNA replication fork, we developed Nascent Chromatin Occupancy Profiles (NCOPs) to comprehensively profile nascent and mature chromatin at nucleotide resolution. While nascent chromatin is inherently less organized than mature chromatin, we identified locus specific differences in the kinetics of chromatin maturation that were predicted by the epigenetic landscape, including the histone variant H2A.Z which marked loci with rapid maturation kinetics. The chromatin maturation at origins of DNA replication was dependent on whether the origin underwent initiation or was passively replicated from distal-originating replication forks suggesting distinct chromatin assembly mechanisms between activated and disassembled pre-replicative complexes. Finally, we identified sites that were only occupied transiently by DNA-binding factors following passage of the replication fork which may provide a mechanism for perturbations of the DNA replication program to shape the regulatory landscape of the genome.


Sign in / Sign up

Export Citation Format

Share Document