scholarly journals Generalized displacement of DNA- and RNA-binding factors mediates the toxicity of arginine-rich cell-penetrating peptides

2018 ◽  
Author(s):  
V. Lafarga ◽  
O. Sirozh ◽  
I. Díaz-López ◽  
M. Hisaoka ◽  
E. Zarzuela ◽  
...  

ABSTRACTDue to their capability to transport chemicals or proteins into target cells, cell-penetrating peptides (CPPs) are being developed as therapy delivery tools. However, and despite their interesting properties, arginine-rich CPPs often show toxicity for reasons that remain poorly understood. Using a (PR)n dipeptide repeat that has been linked to amyotrophic-lateral sclerosis (ALS) as a model of an arginine-rich CPP, we here show that the presence of (PR)n leads to a generalized displacement of RNA- and DNA-binding proteins from chromatin and mRNA. Accordingly, any reaction involving nucleic acids such as RNA transcription, translation, splicing and degradation or DNA replication and repair are impaired by the presence of the CPP. Interestingly, the effects of (PR)n are fully mimicked by PROTAMINE, a small arginine-rich protein that displaces histones from chromatin during spermatogenesis. We propose that widespread coating of nucleic acids and consequent displacement of RNA- and DNA-binding factors from chromatin and mRNA accounts for the toxicity of arginine-rich CPPs, including those that have been recently associated to the onset of ALS.

2021 ◽  
Author(s):  
Vanesa Lafarga ◽  
Oleksandra Sirozh ◽  
Irene Díaz‐López ◽  
Antonio Galarreta ◽  
Misaru Hisaoka ◽  
...  

2012 ◽  
Vol 9 (7) ◽  
pp. 823-836 ◽  
Author(s):  
Taavi Lehto ◽  
Kaido Kurrikoff ◽  
Ülo Langel

2019 ◽  
Vol 10 (4) ◽  
pp. 45 ◽  
Author(s):  
Anderson ◽  
Hobbs ◽  
Gwenin ◽  
Ball ◽  
Bennie ◽  
...  

Directed enzyme prodrug therapy (DEPT) involves the delivery of a prodrug-activating enzyme to a solid tumour site, followed by the subsequent activation of an administered prodrug. One of the most studied enzyme–prodrug combinations is the nitroreductase from Escherichia coli (NfnB) with the prodrug CB1954 [5-(aziridin-1-yl)-2,4-dinitro-benzamide]. One of the major issues faced by DEPT is the ability to successfully internalize the enzyme into the target cells. NfnB has previously been genetically modified to contain cysteine residues (NfnB-Cys) which bind to gold nanoparticles for a novel DEPT therapy called magnetic nanoparticle directed enzyme prodrug therapy (MNDEPT). One cellular internalisation method is the use of cell-penetrating peptides (CPPs), which aid cellular internalization of cargo. Here the cell-penetrating peptides: HR9 and Pep-1 were tested for their ability to conjugate with NfnB-Cys. The conjugates were further tested for their potential use in MNDEPT, as well as conjugating with the delivery vector intended for use in MNDEPT and tested for the vectors capability to penetrate into cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3471-3471
Author(s):  
Jennifer Whangbo ◽  
Marshall Thomas ◽  
Geoffrey McCrossan ◽  
Aaron Deutsch ◽  
Kimberly Martinod ◽  
...  

Abstract When released from cytotoxic T lymphocytes and natural killer cells, Granzyme (Gzm) serine proteases induce programmed cell death of pathogen-infected cells and tumor cells. The Gzms rapidly accumulate in the target cell nucleus by an unknown mechanism. Many of the known substrates of GzmA and GzmB, the most abundant killer cell proteases, bind to DNA or RNA. Gzm substrates predicted by unbiased proteomics studies are also highly enriched for nucleic acid binding proteins. Here we show by fluorescence polarization assays that Gzms bind DNA and RNA with nanomolar affinity. We hypothesized that Gzm binding to nucleic acids enhances nuclear accumulation in target cells and facilitates their cleavage of nucleic acid-binding substrates. In fact, RNase treatment of cell lysates reduced cleavage of RNA binding protein (RBP) targets by GzmA and GzmB. Moreover, adding RNA to recombinant RBP substrates greatly enhanced in vitro cleavage by GzmB, but adding RNA to non-nucleic acid binding proteins did not. For example, exogenous RNA enhanced GzmB cleavage of recombinant hnRNP C1 (an RBP) but not LMNB1 (a non-RBP). In addition, GzmB cleaved the RNA-binding HuR protein efficiently only when it was bound to an HuR-binding RNA oligonucleotide, but not in the presence of an equal amount of non-binding RNA. Thus, nucleic acids facilitate Gzm cleavage of nucleic acid binding substrates. To evaluate whether nucleic acid binding influences Gzm trafficking in target cells, we incubated fixed target cells with RNase and then added Gzms. RNA degradation in target cells reduced Gzm cytosolic localization and increased nuclear accumulation. Similarly, pre-incubating Gzms with exogenous competitor DNA reduced Gzm nuclear localization. The Gzms form a monophyletic clade with other immune serine proteases including neutrophil elastase (NE) and cathepsin G (CATG). Upon neutrophil activation, NE translocates to the nucleus to drive the formation of neutrophil extracellular traps (NETs). NE and CATG, but not non-immune serine proteases such as trypsin and pancreatic elastase, also bind DNA with high affinity and localize to the nucleus of permeabilized cells. Consistent with this finding, competitor DNA also blocks the nuclear localization of NE. Moreover NE and CATG localization to NETs depends on DNA binding. Thus the antimicrobial activity of NETs may depend in part upon the affinity of these proteases for DNA. Our findings indicate that high affinity nucleic acid binding is a conserved and functionally important property of serine proteases involved in cell-mediated immunity. Disclosures: Lieberman: Alnylam Pharmaceuticals: Membership on an entity’s Board of Directors or advisory committees.


2016 ◽  
Vol 31 (3) ◽  
pp. 975-988 ◽  
Author(s):  
Carmen Juks ◽  
Annely Lorents ◽  
Piret Arukuusk ◽  
Ülo Langel ◽  
Margus Pooga

2021 ◽  
Author(s):  
Roxie C. Girardin ◽  
Janice Pata ◽  
Xiaohong Qin ◽  
Haixin Sui ◽  
Kathleen A. McDonough

ABSTRACTThe bacterium Mycobacterium tuberculosis (Mtb) must adapt to myriad host-associated stressors. A recently identified transcription factor, AbmR (ATP-binding mcr11-regulator), regulates expression of an essential stress-responsive small RNA (Mcr11) and inhibits the growth of Mtb. Previously, AbmR was found to make 39S complexes of unknown function. Here we report that AbmR 39S complexes are comprised of AbmR and co-purifying RNAs and that RNA-binding inhibits AbmR’s DNA-binding function. While AbmR binds DNA and regulates gene expression in a sequence specific manner, RNA-binding is not sequence specific. Amino acid R146 is important for DNA-binding but completely dispensable for RNA-binding and 39S complex formation, establishing that the RNA- and DNA-binding functions of AbmR are distinct. RNA bound by AbmR was protected from RNase digestion, supporting an RNA modulatory function for the 39S complex. We also found that abmR is required for optimal survival during treatment with the ATP-depleting antibiotic bedaquiline, which is associated with extended RNA stability. These data establish a paradigm wherein a transcription factor assembles into large complexes to transition between mutually exclusive DNA-binding gene regulatory and RNA-binding RNA modulatory functions. Our findings indicate that AbmR is a dual-function protein that may have novel RNA regulatory roles in stress adapted Mtb.


2017 ◽  
Vol 9 ◽  
pp. 162-169 ◽  
Author(s):  
Bénédicte Ndeboko ◽  
Narayan Ramamurthy ◽  
Guy Joseph Lemamy ◽  
Catherine Jamard ◽  
Peter E. Nielsen ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2671 ◽  
Author(s):  
Jana Váňová ◽  
Alžběta Hejtmánková ◽  
Marie Hubálek Kalbáčová ◽  
Hana Španielová

Viral particles (VPs) have evolved so as to efficiently enter target cells and to deliver their genetic material. The current state of knowledge allows us to use VPs in the field of biomedicine as nanoparticles that are safe, easy to manipulate, inherently biocompatible, biodegradable, and capable of transporting various cargoes into specific cells. Despite the fact that these virus-based nanoparticles constitute the most common vectors used in clinical practice, the need remains for further improvement in this area. The aim of this review is to discuss the potential for enhancing the efficiency and versatility of VPs via their functionalization with cell-penetrating peptides (CPPs), short peptides that are able to translocate across cellular membranes and to transport various substances with them. The review provides and describes various examples of and means of exploitation of CPPs in order to enhance the delivery of VPs into permissive cells and/or to allow them to enter a broad range of cell types. Moreover, it is possible that CPPs are capable of changing the immunogenic properties of VPs, which could lead to an improvement in their clinical application. The review also discusses strategies aimed at the modification of VPs by CPPs so as to create a useful cargo delivery tool.


Sign in / Sign up

Export Citation Format

Share Document