biphasic medium
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Aiguo Wang ◽  
Paula Berton ◽  
Heng Zhao ◽  
Steven L. Bryant ◽  
Md Golam Kibria ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mohammad Ali Mohammadi ◽  
Majid Fasihi Harandi ◽  
Donald P. McManus ◽  
Mehdi Mansouri

Abstract Background The complex life cycle of Echinococcus granulosus involves numerous environmental conditions within different intermediate and definitive hosts. This requires adaptation at different levels of transcript regulation. Alternative splicing (AS) and the related cellular functions as one of the major fields of post-genomics has been poorly studied in tapeworms. In the present study, we investigated AS events and their potential biological effects in E. granulosus. Methods Whole transcriptome sequencing data of four groups of protoscoleces were prepared for RNA-seq library construction. Fresh protoscoleces were either used as non-induced controls (NT group) or incubated for 15 min with pepsin (PEP group) and cultivated in a biphasic medium for 12 and 24 h (12 and 24 h groups). The frequency and different types of AS events were identified using rMATS software. Functional annotations and gene ontology of differential AS (DAS) genes were performed using Blast2GO software. AS events were experimentally validated by PCR on the protoscolex cDNAs using specific primers for each gene. Results At least one AS event was found in 38.1% of the genes (3904 out of 10,245) in the protoscoleces during early strobilar development. The genes were associated primarily with cellular and metabolic processes and binding and catalytic activity. KEGG pathway analysis of DAS events revealed a number of genes belonging to different components of the spliceosome complex. These genes tended to belong to common SR proteins, U1-related factors, U2-related factors, complex A-specific factors and other splicing-related proteins. Conclusions The high number of AS events in the transcriptome regulatory mechanisms indicates the essential rapid molecular processes required by the parasite for adaptation in different environments. Graphical Abstract


2021 ◽  
Vol 2 (3) ◽  
pp. 100703
Author(s):  
Jessica Rodríguez Durán ◽  
Arturo Muñoz-Calderón ◽  
Karina Andrea Gómez ◽  
Mariana Potenza

2021 ◽  
Vol 8 ◽  
Author(s):  
Mauricio Adaro ◽  
Grisel Bersi ◽  
Juan Manuel Talia ◽  
Claudia Bernal ◽  
Fanny Guzmán ◽  
...  

Antiacanthain and granulosain are the partially purified proteolytic extracts from the South American native fruits of Bromelia antiacantha (Bertol. ) and Solanum granuloso leprosum, respectively. The aim of this work was to compare the ability of both soluble and immobilized antiacanthain and granulosain f or the synthesis of Z-Tyr-Val-OH, a novel antibacterial dipeptide, in different reaction systems formed by almost anhydrous organic solvents (Xw: 1 × 10−5) and several percentages of immiscible organic solvents in 100 mM Tris(hydroxymethyl)aminomethane hydrochloride buffer pH 8.0. Soluble antiacanthain in half of the 24 different organic biphasic media showed higher catalytic potential than in 100 mM Tris(hydroxymethyl)aminomethane hydrolchloride buffer pH 8.0. Soluble granulosain showed lower catalytic potential in all liquid-liquid biphasic media than in the same buffer. However, 50% (v/v) ethyl ethanoate in 100 mM Tris(hydroxymethyl)aminomethane hydrolchloride buffer pH 8.0 allowed to express the highest catalytic potential of both soluble enzymes. In 50% v/v ethyl ethanoate, soluble antiacanthain and granulosain catalyzed the synthesis of Z-Tyr-Val-OH with 72 ± 0.15 and 60 ± 0.10% maximal peptide yields, respectively. Multi-point immobilization in glyoxyl-silica did not lead to better peptide yields than soluble enzymes, in that liquid-liquid biphasic medium under the same reaction conditions. Soluble and glyoxyl-silica immobilized antiacanthain in almost anhydrous ethyl ethanoate (Xw: 1 × 10−5) were able to retain 17.3 and 45% of the initial proteolytic activity of antiacanthain in 100 mM Tris hydrolchloride buffer pH 8.0, respectively, at 40°C under agitation (200 rpm). Soluble and glyoxyl-silica immobilized granulosain were inactivated under the same reaction conditions. Glyoxyl-silica immobilized antiacanthain showed to be a robust biocatalyst in almost anhydrous ethyl ethanoate (Xw: 1 × 10−5), eliciting the best peptide yield (75 ± 0.13%). The synthesis reaction of Z-Tyr-Val-OH could not proceed when soluble antiacanthain was used under the same conditions. Both peptidases only catalyzed the synthesis reaction under kinetic control, using activated acyl donor substrates. Finally, this work reports a novel broad-spectrum antibacterial peptide that significantly decreased (p ≤ 0.05) the specific growth rates of Gram positive and Gram negative microorganisms at very low concentrations (≥15 and 35 μg/ml, respectively); contributing with a new safe food preservative of applying for different food systems.


2021 ◽  
Vol 8 ◽  
Author(s):  
Damian R. Sowinski ◽  
Matthew D. J. McGarry ◽  
Elijah E. W. Van Houten ◽  
Scott Gordon-Wylie ◽  
John B Weaver ◽  
...  

Magnetic Resonance Elastography allows noninvasive visualization of tissue mechanical properties by measuring the displacements resulting from applied stresses, and fitting a mechanical model. Poroelasticity naturally lends itself to describing tissue - a biphasic medium, consisting of both solid and fluid components. This article reviews the theory of poroelasticity, and shows that the spatial distribution of hydraulic permeability, the ease with which the solid matrix permits the flow of fluid under a pressure gradient, can be faithfully reconstructed without spatial priors in simulated environments. The paper describes an in-house MRE computational platform - a multi-mesh, finite element poroelastic solver coupled to an artificial epistemic agent capable of running Bayesian inference to reconstruct inhomogenous model mechanical property images from measured displacement fields. Building on prior work, the domain of convergence for inference is explored, showing that hydraulic permeabilities over several orders of magnitude can be reconstructed given very little prior knowledge of the true spatial distribution.


2020 ◽  
Vol 497 ◽  
pp. 111189
Author(s):  
Pablo J. Baricelli ◽  
Mariandry Rodríguez ◽  
Luis G. Melean ◽  
Margarita Borusiak ◽  
Isis Crespo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document