Is motor learning of stroke patients in non-immersive virtual environment influenced by laterality of injury? A preliminary study

2021 ◽  
Vol 25 ◽  
pp. 53-60
Author(s):  
Aline Braga Galvão Silveira Fernandes ◽  
Julio César Paulino de Melo ◽  
Débora Carvalho de Oliveira ◽  
Fabricia Azevedo da Costa Cavalcanti ◽  
Octavian Adrian Postolache ◽  
...  
2021 ◽  
pp. 1-7
Author(s):  
Ailton Barbosa da Silva Júnior ◽  
Beatriz Cristina Medeiros de Lucena ◽  
Edson Meneses Silva-Filho ◽  
Aline Braga Galvão Silveira Fernandes

BACKGROUND: Several therapies are being used for the rehabilitation of stroke patients, such as Virtual Reality (VR) which has emerged as an interactive intervention to motivate and rehabilitate post-stroke patients. However, data comparison between the virtual and real environments is inconclusive. Thus, this study aimed to compare the kinematics and performance of the affected lower limb of post-stroke patients and healthy individuals during stationary walking activity between the real and virtual non-immersive environments. METHODS: A cross-sectional study was conducted with 10 stroke patients and 10 healthy individuals, matched for gender and age. The participants performed stationary walking in a real and non-immersive virtual environment (Wii Fit Plus® –Running mode) for 3 minutes in random order. The performance was measured in both environments using the number of steps, while the kinematics was assessed by calculating the mean maximum flexion and extension of each joint (hip, knee, and ankle) of the affected lower limb. RESULTS: Post-stroke patients performed a higher total number of steps (p = 0.042), mainly in the third minute (p = 0.011), less knee flexion (p = 0.001) and total knee range of motion (p = 0.001) in the virtual compared with the real environment. CONCLUSIONS: Post-stroke patients performed more steps, with a faster cadence and smaller knee range of motion on the affected side in non-immersive virtual environment compared with the real environment.


Author(s):  
Cristina Russo ◽  
Laura Veronelli ◽  
Carlotta Casati ◽  
Alessia Monti ◽  
Laura Perucca ◽  
...  

AbstractMotor learning interacts with and shapes experience-dependent cerebral plasticity. In stroke patients with paresis of the upper limb, motor recovery was proposed to reflect a process of re-learning the lost/impaired skill, which interacts with rehabilitation. However, to what extent stroke patients with hemiparesis may retain the ability of learning with their affected limb remains an unsolved issue, that was addressed by this study. Nineteen patients, with a cerebrovascular lesion affecting the right or the left hemisphere, underwent an explicit motor learning task (finger tapping task, FTT), which was performed with the paretic hand. Eighteen age-matched healthy participants served as controls. Motor performance was assessed during the learning phase (i.e., online learning), as well as immediately at the end of practice, and after 90 min and 24 h (i.e., retention). Results show that overall, as compared to the control group, stroke patients, regardless of the side (left/right) of the hemispheric lesion, do not show a reliable practice-dependent improvement; consequently, no retention could be detected in the long-term (after 90 min and 24 h). The motor learning impairment was associated with subcortical damage, predominantly affecting the basal ganglia; conversely, it was not associated with age, time elapsed from stroke, severity of upper-limb motor and sensory deficits, and the general neurological condition. This evidence expands our understanding regarding the potential of post-stroke motor recovery through motor practice, suggesting a potential key role of basal ganglia, not only in implicit motor learning as previously pointed out, but also in explicit finger tapping motor tasks.


Sign in / Sign up

Export Citation Format

Share Document