Stationary walking performance of post-stroke patients and healthy individuals in real and virtual non-immersive environments

2021 ◽  
pp. 1-7
Author(s):  
Ailton Barbosa da Silva Júnior ◽  
Beatriz Cristina Medeiros de Lucena ◽  
Edson Meneses Silva-Filho ◽  
Aline Braga Galvão Silveira Fernandes

BACKGROUND: Several therapies are being used for the rehabilitation of stroke patients, such as Virtual Reality (VR) which has emerged as an interactive intervention to motivate and rehabilitate post-stroke patients. However, data comparison between the virtual and real environments is inconclusive. Thus, this study aimed to compare the kinematics and performance of the affected lower limb of post-stroke patients and healthy individuals during stationary walking activity between the real and virtual non-immersive environments. METHODS: A cross-sectional study was conducted with 10 stroke patients and 10 healthy individuals, matched for gender and age. The participants performed stationary walking in a real and non-immersive virtual environment (Wii Fit Plus® –Running mode) for 3 minutes in random order. The performance was measured in both environments using the number of steps, while the kinematics was assessed by calculating the mean maximum flexion and extension of each joint (hip, knee, and ankle) of the affected lower limb. RESULTS: Post-stroke patients performed a higher total number of steps (p = 0.042), mainly in the third minute (p = 0.011), less knee flexion (p = 0.001) and total knee range of motion (p = 0.001) in the virtual compared with the real environment. CONCLUSIONS: Post-stroke patients performed more steps, with a faster cadence and smaller knee range of motion on the affected side in non-immersive virtual environment compared with the real environment.

2008 ◽  
Vol 23 (5) ◽  
pp. 567-572
Author(s):  
Yoshihito SUGIURA ◽  
Miho SUZUKI ◽  
Yoshikiyo KANADA ◽  
Hiroaki SAKURAI ◽  
Motonori MURATA ◽  
...  

Author(s):  
A.I. Zagranichny

The article presents the results of a research of different types of activity depending on the frequency of transfer of social activity from the real environment to the virtual environment and vice versa. In the course of the research the following types of activity were identified: play activity; educational activity; work; communicative activity. 214 respondents from the following cities participated in the research: Balakovo, Saratov, Moscow. They were at the age of 15 to 24 years. 52% of them were women. They had the following social statuses: "pupil", "student", "young specialist". The correlation interrelation between the specified types of activity and the frequency of transfer of social activity from one environment into another has been analyzed and interpreted. In the course of the research the following results were received: the frequency of transfer of social activity from the real environment to the virtual environment has a direct positive link with such types of activity as play activity (r=0.221; p <0.01); educational activity (r=0.228; p <0.01) and communicative activity (r=0.346; p <0.01). The frequency of transfer of social activity from the virtual environment to the real one has a direct positive link only with two types of activity: educational activity (r=0.188; p <0.05) and communicative activity (r=0.331; p <0.01).


1996 ◽  
Vol 5 (1) ◽  
pp. 122-135 ◽  
Author(s):  
Takashi Oishi ◽  
Susumu Tachi

See-through head-mounted displays (STHMDs), which superimpose the virtual environment generated by computer graphics (CG) on the real world, are expected to be able to vividly display various simulations and designs by using both the real environment and the virtual environment around us. However, we must ensure that the virtual environment is superimposed exactly on the real environment because both environments are visible. Disagreement in matching locations and size between real and virtual objects is likely to occur between the world coordinates of the real environment where the STHMD user actually exists and those of the virtual environment described as parameters of CG. This disagreement directly causes displacement of locations where virtual objects are superimposed. The STHMD must be calibrated so that the virtual environment is superimposed properly. Among the causes of such errors, we focus both on systematic errors of projection transformation parameters caused in manufacturing and differences between actual and supposed location of user's eye on STHMD when in use, and propose a calibration method to eliminate these effects. In the calibration method, the virtual cursor drawn in the virtual environment is directly fitted onto targets in the real environment. Based on the result of fitting, the least-squares method identifies values of the parameters that minimize differences between locations of the virtual cursor in the virtual environment and targets in the real environment. After we describe the calibration methods, we also report the result of this application to the STHMD that we have made. The result is accurate enough to prove the effectiveness of the calibration methods.


Robotica ◽  
2009 ◽  
Vol 28 (1) ◽  
pp. 47-56 ◽  
Author(s):  
M. Karkoub ◽  
M.-G. Her ◽  
J.-M. Chen

SUMMARYIn this paper, an interactive virtual reality motion simulator is designed and analyzed. The main components of the system include a bilateral control interface, networking, a virtual environment, and a motion simulator. The virtual reality entertainment system uses a virtual environment that enables the operator to feel the actual feedback through a haptic interface as well as the distorted motion from the virtual environment just as s/he would in the real environment. The control scheme for the simulator uses the change in velocity and acceleration that the operator imposes on the joystick, the environmental changes imposed on the motion simulator, and the haptic feedback to the operator to maneuver the simulator in the real environment. The stability of the closed-loop system is analyzed based on the Nyquist stability criteria. It is shown that the proposed design for the simulator system works well and the theoretical findings are validated experimentally.


2016 ◽  
Vol 23 (4) ◽  
pp. 293-303 ◽  
Author(s):  
Robert Dymarek ◽  
Kuba Ptaszkowski ◽  
Lucyna Słupska ◽  
Tomasz Halski ◽  
Jakub Taradaj ◽  
...  

2021 ◽  
Author(s):  
◽  
Regan Petrie

<p>Early, intense practice of functional, repetitive rehabilitation interventions has shown positive results towards lower-limb recovery for stroke patients. However, long-term engagement in daily physical activity is necessary to maximise the physical and cognitive benefits of rehabilitation. The mundane, repetitive nature of traditional physiotherapy interventions and other personal, environmental and physical elements create barriers to participation. It is well documented that stroke patients engage in as little as 30% of their rehabilitation therapies. Digital gamified systems have shown positive results towards addressing these barriers of engagement in rehabilitation, but there is a lack of low-cost commercially available systems that are designed and personalised for home use. At the same time, emerging mixed reality technologies offer the ability to seamlessly integrate digital objects into the real world, generating an immersive, unique virtual world that leverages the physicality of the real world for a personalised, engaging experience.  This thesis explored how the design of an augmented reality exergame can facilitate engagement in independent lower-limb stroke rehabilitation. Our system converted prescribed exercises into active gameplay using commercially available augmented reality mobile technology. Such a system introduced an engaging, interactive alternative to existing mundane physiotherapy exercises.  The development of the system was based on a user-centered iterative design process. The involvement of health care professionals and stroke patients throughout each stage of the design and development process helped understand users’ needs, requirements and environment to refine the system and ensure its validity as a substitute for traditional rehabilitation interventions.  The final output was an augmented reality exergame that progressively facilitates sit-to-stand exercises by offering immersive interactions with digital exotic wildlife. We hypothesize that the immersive, active nature of a mobile, mixed reality exergame will increase engagement in independent task training for lower-limb rehabilitation.</p>


Sign in / Sign up

Export Citation Format

Share Document