scholarly journals Seasonal changes in adenosine kinase in tanycytes of the Arctic ground squirrel (Urocitellus parryii)

2021 ◽  
Vol 113 ◽  
pp. 101920
Author(s):  
C. Frare ◽  
K.L. Drew
1974 ◽  
Vol 52 (10) ◽  
pp. 894-902 ◽  
Author(s):  
Hans W. Behrisch

Liver of the hibernating (H) Arctic ground squirrel (Citellus undulatus) contains a single species of pyruvate kinase (PyK) that is distinct from the single isoenzyme of pyK observed in the non-hibernating (NH) ground squirrel, which has been previously described (Behrisch &Johnson (1974) Can. J. Biochem. 52, 547–559). The H-PyK has a pI value of 5.7 and a molecular weight of 241 000 – 243 000. Affinity of the H-PyK for the substrates phosphoenolpyruvate (PEP) and ADP is not affected by changing temperature. It is argued that this stability of the apparent Km's for substrate over a wide temperature range permits the hibernator to take advantage of the Q10 effect in maintaining a low rate of the PyK reaction. Similarly, affinity of H-PyK for the allosteric activator fructose-1,6-phosphate (FDP) and the inhibitor ATP is also conspicuously independent of temperature, suggesting a fine stoichiometry in the relative concentrations of the regulatory ligands in control of H-PyK over a wide temperature range. Further, affinity of H-PyK for the inhibitor ATP is about three- to fourfold lower than that of the NH-PyK, a condition that would favor the maintenance of a high energy charge in the hibernating liver cell. ATP apparently inhibits PyK by causing a dissociation of the enzyme molecule into two "halves" of about 110 000 molecular weight each. This dissociation is offset and reversed by FDP. Removal of the ATP by dialysis does not of itself result in a reassociation of the PyK "halves"; FDP and/or the substrates are required for the two subunits of PyK to reassociate. As the apparent Ki of H-PyK for ATP is higher than that of NH-PyK, substantially higher concentrations of ATP are required to effect the dissociation of H-PyK. Similarly, elevated concentrations of FDP are required to offset the ATP-caused dissociation of the H-PyK.Hibernating Arctic ground squirrels that are preparing to emerge finally from the hibernating state already possess substantial activities of the NH-PyK isoenzyme. This suggests that the animal "anticipates" its transition from one metabolic state from another. On the basis of these data a formal mechanism is proposed for the regulation of liver PyK in the Arctic ground squirrel in both the non-hibernating and hibernating states.


PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94225 ◽  
Author(s):  
Lori K. Bogren ◽  
Jasmine M. Olson ◽  
JoAnna Carpluk ◽  
Jeanette M. Moore ◽  
Kelly L. Drew

1950 ◽  
Vol 31 (3) ◽  
pp. 304 ◽  
Author(s):  
Charles G. Wilber ◽  
X. J. Musacchia

Sign in / Sign up

Export Citation Format

Share Document