Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells

2018 ◽  
Vol 515 ◽  
pp. 160-171 ◽  
Author(s):  
Rajesh Kumar ◽  
Everson T.S.G. da Silva ◽  
Rajesh K. Singh ◽  
Raluca Savu ◽  
Andrei V. Alaferdov ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Juanito Raphael F. Foronda ◽  
Stellar Marie R. Cabrera ◽  
Darrel L. Cumpas ◽  
Paolo Gio A. Villar ◽  
Joshua L. Tan ◽  
...  

Catalysts in fuel cells are normally platinum based because platinum exhibits high electrocatalytic activity towards ethanol oxidation in acidic medium. However, bulk Pt is expensive and rare in nature. To reduce the consumption of Pt, a support material or matrix is needed to disperse Pt on its surface as micro- or nanoparticles with potential application as anode material in direct ethanol fuel cells (DEFCs). In this study, a composite material consisting of platinum particles dispersed on reduced graphene oxide/poly(3,4-ethylenedioxythiophene) (RGO/PEDOT) support was electrochemically prepared for ethanol oxidation in sulfuric acid electrolyte. PEDOT, a conductive polymer, was potentiodynamically polymerized from the corresponding monomer, 0.10 M EDOT in 0.10 M HClO4electrolyte. The PEDOT-modified electrode was used as a substrate for exfoliated graphene oxide (EGO) which was prepared by electrochemical exfoliation of graphite from carbon rod of spent batteries and subsequently reduced to form RGO. The Pt/RGO/PEDOT composite gave the highest electrocatalytic activity with an anodic current density of 2688.7 mA·cm−2at E = 0.70 V (versus Ag/AgCl) towards ethanol oxidation compared to bare Pt electrode and other composites. Scanning electron microscopy (SEM) revealed the surface morphology of the hybrid composites while energy dispersive X-ray (EDX) confirmed the presence of all the elements for the Pt/RGO/PEDOT composite.


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 98708-98716 ◽  
Author(s):  
Zhelin Liu ◽  
Yinghui Feng ◽  
Xiaofeng Wu ◽  
Keke Huang ◽  
Shouhua Feng ◽  
...  

Pd nanoparticles with multi-edges and corners are prepared and assembled on reduced graphene oxide to examine the electrocatalytic activity. Point discharge is regarded to be capable of facilitating the electron transfer.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1372
Author(s):  
Mir Ghasem Hosseini ◽  
Vahid Daneshvari-Esfahlan ◽  
Hossein Aghajani ◽  
Sigrid Wolf ◽  
Viktor Hacker

In the present work, nitrogen-doped reduced graphene oxide-supported (NrGO) bimetallic Pd–Ni nanoparticles (NPs), fabricated by means of the electrochemical reduction method, are investigated as an anode electrocatalyst in direct hydrazine–hydrogen peroxide fuel cells (DHzHPFCs). The surface and structural characterization of the synthesized catalyst affirm the uniform deposition of NPs on the distorted NrGO. The electrochemical studies indicate that the hydrazine oxidation current density on Pd–Ni/NrGO is 1.81 times higher than that of Pd/NrGO. The onset potential of hydrazine oxidation on the bimetallic catalyst is also slightly more negative, i.e., the catalyst activity and stability are improved by Ni incorporation into the Pd network. Moreover, the Pd–Ni/NrGO catalyst has a large electrochemical surface area, a low activation energy value and a low resistance of charge transfer. Finally, a systematic investigation of DHzHPFC with Pd–Ni/NrGO as an anode and Pt/C as a cathode is performed; the open circuit voltage of 1.80 V and a supreme power density of 216.71 mW cm−2 is obtained for the synthesized catalyst at 60 °C. These results show that the Pd–Ni/NrGO nanocatalyst has great potential to serve as an effective and stable catalyst with low Pd content for application in DHzHPFCs.


2018 ◽  
Vol 42 (13) ◽  
pp. 10724-10732 ◽  
Author(s):  
S. Vinod Selvaganesh ◽  
P. Dhanasekaran ◽  
Raghuram Chetty ◽  
Santoshkumar D. Bhat

Schematic representing the formation of PEDOT–GO and further simultaneous deposition of Pt and exfoliation of GO to rGO and possible ORR mechanism.


2016 ◽  
Vol 4 (10) ◽  
pp. 3865-3871 ◽  
Author(s):  
Yuchen Qin ◽  
Xiaoping Dai ◽  
Xin Zhang ◽  
Xingliang Huang ◽  
Hui Sun ◽  
...  

Multiply-twinned Au–Ag NCs/rGO are prepared by a one-pot method under microwave irradiation and exhibit excellent HER activity and stability.


Sign in / Sign up

Export Citation Format

Share Document