Enhanced catalytic activity of oxygenated VOC deep oxidation on highly active in-situ generated GdMn2O5/GdMnO3 catalysts

2020 ◽  
Vol 578 ◽  
pp. 229-241 ◽  
Author(s):  
Mingming Guo ◽  
Kan Li ◽  
Hongbo Zhang ◽  
Xin Min ◽  
Xiaofang Hu ◽  
...  
2015 ◽  
Vol 3 (20) ◽  
pp. 11048-11056 ◽  
Author(s):  
Yifei Sun ◽  
Jianhui Li ◽  
Yimin Zeng ◽  
Babak Shalchi Amirkhiz ◽  
Mengni Wang ◽  
...  

Introduction of A-site deficiency on Ni-doped LaSrCrO3 anodes helps form highly mobile oxygen vacancies and remarkably enhances Ni nanoparticle reducibility, and significantly increases electronic conductivity and catalytic activity.


2016 ◽  
Vol 40 (2) ◽  
pp. 1685-1692 ◽  
Author(s):  
Min Hong ◽  
Lidan Xu ◽  
Fangli Wang ◽  
Shuling Xu ◽  
Haibo Li ◽  
...  

Graphene oxide-supported hollow Au–Ag alloy nanocages were synthesized here, which exhibited short induction time, high catalytic activity and good stability against agglomeration for the reduction of 4-nitrophenol to 4-aminophenol.


1980 ◽  
Vol 45 (8) ◽  
pp. 2219-2223 ◽  
Author(s):  
Marie Jakoubková ◽  
Martin Čapka

Kinetics of homogenous hydrogenation of 1-heptene catalysed by rhodium(I) complexes prepared in situ from μ,μ'-dichloro-bis(cyclooctenerhodium) and phosphines of the type RP(C6H5)2 (R = -CH3, -(CH2)nSi(CH3)3; n = 1-4) have been studied. The substitution of the ligands by the trimethylsilyl group was found to increase significantly the catalytic activity of the complexes. The results are discussed in relation to the electron density on the phosphorus atom determined by 31P NMR spectroscopy and to its proton acceptor ability determined by IR spectroscopy.


1986 ◽  
Vol 51 (12) ◽  
pp. 2751-2759 ◽  
Author(s):  
Jindřich Poláček ◽  
Helena Antropiusová ◽  
Lidmila Petrusová ◽  
Karel Mach

The C6H6.Ti(II)(AlBr4)2 (Ib) catalyst deactivates during the butadiene cyclotrimerization to give a solid containing all titanium (mostly as TiBr3) and a mixture of AlBr3 and RAlBr2 compounds dissolved in benzene. The residual cationic catalytic activity of the deactivated Ib system is due to presence of AlBr3. In contrast to TiCl3, the deactivated Ib system and the model system TiBr3 + AlBr3 are not activated by the addition of EtAlCl2 in the presence of butadiene: the highly active benzenetitanium(II) system is re-constituted only after reduction of TiBr3 with Et3Al followed by the addition of EtAlCl2. The addition of Et2AlBr to Ib accelerates the deactivation of the system. Deactivation products of this system contain mainly Ti(II) species which forms benzenetitanium(II) catalytic system after addition of EtAlCl2. All the EtAlCl2 reactivated systems produce (Z, E, E)-1,5,9-cyclododecatriene with high catalytic stability and considerable selectivity (>90%). This behaviour points to the catalysis by benzenetitanium(II) chloroalane complexes containing only low amount of bromine atoms and ethyl groups.


ACS Catalysis ◽  
2021 ◽  
pp. 8174-8182
Author(s):  
Kailu Guo ◽  
Yantao Wang ◽  
Junfeng Huang ◽  
Min Lu ◽  
Hua Li ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 772
Author(s):  
Yanxiong Liu ◽  
Changhua Hu ◽  
Longchun Bian

The correlation between the occurrence state of surface Pd species of Pd/CeO2 for lean CH4 combustion is investigated. Herein, by using a reduction-deposition method, we have synthesized a highly active 0.5% PdO/CeO2-RE catalyst, in which the Pd nanoparticles are evenly dispersed on the CeO2 nanorods CeO2-R. Based on comprehensive characterization, we have revealed that the uniformly dispersed Pd nanoparticles with a particle size distribution of 2.3 ± 0.6 nm are responsible for the generation of PdO and PdxCe1−xO2−δ phase with –Pd2+–O2−–Ce4+– linkage, which can easily provide oxygen vacancies and facilitate the transfer of reactive oxygen species between the CeO2-R and Pd species. As a consequence, the remarkable catalytic activity of 0.5% Pd/CeO2-RE is related to the high concentration of PdO species on the surface of the catalyst and the synergistic interaction between the Pd species and the CeO2 nanorod.


RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12532-12542
Author(s):  
HanShuang Liu ◽  
KaiJun Wang ◽  
XiaoYan Cao ◽  
JiaXin Su ◽  
Zhenggui Gu

The La2O3–CuO–MgO catalyst acts on the oxidation of cumene and shows excellent catalytic activity through the coordination of surface and interior.


2014 ◽  
Vol 3 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Hannes Alex ◽  
Norbert Steinfeldt ◽  
Klaus Jähnisch ◽  
Matthias Bauer ◽  
Sandra Hübner

AbstractNanoparticles (NP) have specific catalytic properties, which are influenced by parameters like their size, shape, or composition. Bimetallic NPs, composed of two metal elements can show an improved catalytic activity compared to the monometallic NPs. We, herein, report on the selective aerobic oxidation of benzyl alcohol catalyzed by unsupported Pd/Au and Pd NPs at atmospheric pressure. NPs of varying compositions were synthesized and characterized by UV/Vis spectroscopy, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The NPs were tested in the model reaction regarding their catalytic activity, stability, and recyclability in batch and continuous procedure. Additionally, in situ extended X-ray absorption fine structure (EXAFS) measurements were performed in order to get insight in the process during NP catalysis.


Sign in / Sign up

Export Citation Format

Share Document