scholarly journals Contact angle as a powerful tool in anisotropic colloid synthesis

2021 ◽  
Vol 581 ◽  
pp. 417-426
Author(s):  
Marlous Kamp ◽  
Bart de Nijs ◽  
Jeremy J. Baumberg ◽  
Oren A. Scherman
Author(s):  
O.N Goncharova ◽  
◽  
I.V. Marchuk ◽  
A.V. Zakurdaeva ◽  
◽  
...  

TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 145-153 ◽  
Author(s):  
Chengua Yu ◽  
Feng Wang ◽  
Shiyu Fu ◽  
Lucian Lucia

A very low-density oil-absorbing hydrophobic material was fabricated from cellulose nanofiber aerogels–coated silane substances. Nanocellulose aerogels (NCA) superabsorbents were prepared by freeze drying cellulose nanofibril dispersions at 0.2%, 0.5%, 0.8%, 1.0%, and 1.5% w/w. The NCA were hydrophobically modified with methyltrimethoxysilane. The surface morphology and wettability were characterized by scanning electron microscopy and static contact angle. The aerogels displayed an ultralow density (2.0–16.7 mg·cm-3), high porosity (99.9%–98.9%), and superhydrophobicity as evidenced by the contact angle of ~150° that enabled the aerogels to effectively absorb oil from an oil/water mixture. The absorption capacities of hydrophobic nanocellulose aerogels for waste engine oil and olive oil could be up to 140 g·g-1 and 179.1 g·g-1, respectively.


1996 ◽  
Vol 451 ◽  
Author(s):  
T. Shimizu ◽  
M. Murahara

ABSTRACTA Fluorocarbon resin surface was selectively modified by irradiation with a ArF laser beam through a thin layer of NaAlO2, B(OH)3, or H2O solution to give a hydrophilic property. As a result, with low fluence, the surface was most effectively modified with the NaAlO2 solution among the three solutions. However, the contact angle in this case changed by 10 degrees as the fluence changed only 1mJ/cm2. When modifying a large area of the surface, high resolution displacement could not be achieved because the laser beam was not uniform in displacing functional groups. Thus, the laser fluence was successfully made uniform by homogenizing the laser beam; the functional groups were replaced on the fluorocarbon resin surface with high resolution, which was successfully modified to be hydrophilic by distributing the laser fluence uniformly.


2002 ◽  
Vol 727 ◽  
Author(s):  
S. Ichikawa ◽  
T. Akita ◽  
M. Okumura ◽  
M. Haruta ◽  
K. Tanaka

AbstractThe catalytic properties of nanostructured gold catalyst are known to depend on the size of the gold particles and to be activated when the size decreases to a few nanometers. We investigated the size dependence of the three-dimensional nanostructure on the mean inner potential of gold catalysts supported on titanium oxide using electron holography and high-resolution electron microscopy (HREM). The contact angle of the gold particles on the titanium oxide tended to be over 90° for gold particles with a size of over 5 nm, and below 90° for a size of below 2 nm. This decreasing change in the contact angle (morphology) acts to increase the perimeter and hence the area of the interface between the gold and titanium oxide support, which is considered to be an active site for CO oxidation. The mean inner potential of the gold particles also changed as their size decreased. The value of the inner potential of gold, which is approximately 25 V in bulk state, rose to over 40 V when the size of the gold particles was less than 2 nm. This phenomenon indicates the existence of a charge transfer at the interface between gold and titanium oxide. The 3-D structure change and the inner potential change should be attributed to the specific electronic structure at the interface, owing to both the “nano size effect” and the “hetero-interface effect.”


2018 ◽  
Author(s):  
Qiao Liu ◽  
Abbasali Abouei Mehrizi ◽  
Hao Wang

2018 ◽  
Vol 57 (2) ◽  
pp. 625-633
Author(s):  
Sangheon Park ◽  
Sukhoon Yoon ◽  
Sang-Kyoon Park ◽  
Jiseon Ryu

2020 ◽  
Author(s):  
Muayad Al-shaeli ◽  
Stefan J. D. Smith ◽  
Shanxue Jiang ◽  
Huanting Wang ◽  
Kaisong Zhang ◽  
...  

<p>In this study, novel <a>mixed matrix polyethersulfone (PES) membranes</a> were synthesized by using two different kinds of metal organic frameworks (MOFs), namely UiO-66 and UiO-66-NH<sub>2</sub>. The composite membranes were characterised by SEM, EDX, FTIR, PXRD, water contact angle, porosity, pore size, etc. Membrane performance was investigated by water permeation flux, flux recovery ratio, fouling resistance and anti-fouling performance. The stability test was also conducted for the prepared mixed matrix membranes. A higher reduction in the water contact angle was observed after adding both MOFs to the PES and sulfonated PES membranes compared to pristine PES membranes. An enhancement in membrane performance was observed by embedding the MOF into PES membrane matrix, which may be attributed to the super-hydrophilic porous structure of UiO-66-NH<sub>2</sub> nanoparticles and hydrophilic structure of UiO-66 nanoparticles that could accelerate the exchange rate between solvent and non-solvent during the phase inversion process. By adding the MOFs into PES matrix, the flux recovery ratio was increased greatly (more than 99% for most mixed matrix membranes). The mixed matrix membranes showed higher resistance to protein adsorption compared to pristine PES membranes. After immersing the membranes in water for 3 months, 6 months and 12 months, both MOFs were stable and retained their structure. This study indicates that UiO-66 and UiO-66-NH<sub>2</sub> are great candidates for designing long-term stable mixed matrix membranes with higher anti-fouling performance.</p>


Sign in / Sign up

Export Citation Format

Share Document