Understanding the anchoring interaction of coagulation factor Va light chain on zeolites: A molecular dynamics study

Author(s):  
Jiachen Li ◽  
Hao Chen ◽  
Shenxin Liu ◽  
Zhengzhong Kang ◽  
Lisha Yu ◽  
...  
Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2180-2190
Author(s):  
MD Rand ◽  
M Kalafatis ◽  
KG Mann

Platelet-derived coagulation factor Va is the primary secreted substrate for a thrombin-stimulation-dependent platelet kinase. Human platelet factor Va, consisting of a molecular weight (M(r)) 105,000 heavy chain and an M(r) 74,000 light chain, incorporates phosphate in at least two sites on the light chain. Phosphorylated factor Va represents 50% of the secreted protein-associated phosphate. This modification occurs exclusively at serine residues and is inhibited by H-7 and staurosporine, which suggests a protein kinase C (PKC)-mediated event. Purified plasma factor V and Va are phosphorylated in the light chain region by rat brain PKC. The activity of platelet factor Va in prothrombinase on platelets is not altered when phosphorylation is inhibited by staurosporine. Plasma-derived factor Va in the presence of thrombin stimulated platelets is phosphorylated on both the heavy chain and the light chain. Plasma factor V and factor Va heavy chain phosphorylation occurs without light chain phosphorylation in the presence of added 32P gamma-ATP and non-stimulated or collagen- stimulated platelets or casein kinase II. This differential phosphorylation of factor Va heavy and light chain shows two independent platelet kinase activities that act on factor Va. The heavy chain factor V/Va kinase activity is similar to casein kinase II, which we have demonstrated previously to act on factor Va and accelerate activated protein C inactivation of the cofactor. Our data show platelet-dependent phosphorylation of platelet and plasma factor V and Va resulting in significant covalent modifications of the cofactor. These modifications may play a role in directing the extracellular distribution of factor V and factor Va.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 124-124
Author(s):  
Samira B. Jeimy ◽  
Rachael A. Woram ◽  
Nola Fuller ◽  
Mary Anne Quinn-Allen ◽  
Gerard Nicolaes ◽  
...  

Abstract Activated coagulation factor V is a key non-enzymatic cofactor that is an essential component of the prothrombinase complex. In blood, much of the procoagulant factor V is stored in platelets, as a complex with the α-granule protein multimerin, for activation-induced release during clot formation. Presently, the molecular nature of multimerin - factor V binding has not been determined, although multimerin is known to interact with the light chain of factor V and Va. Using modified enzyme-linked immunoassays and recombinant factor V constructs, we previously found that discontinuous regions in the C2 domain of factor V were important for binding multimerin, and that these regions overlapped with areas in factor V important for its procoagulant function. Specifically, four (S2183T, W2063A/W2064A, K2060Q/K2061Q, K2060Q/K2061Q/W2063A/ W2064A) full-length, site-directed C2 mutants, and 12 (W2063A, W2064A (W2063, W2064)A, R2074A (R2072, R2074)A (K2101, K2103, K2104)A, L2116A (K2157, H2159, K2161)A, R2171A, R2174A, E2189A (R2187, E2189)A) B domain deleted, charge to alanine constructs had significantly reduced multimerin binding (p< 0.01), relative to the corresponding wild-type. In the present study, we evaluated multimerin-factor V binding with a new assay that used affinity purified, recombinant multimerin immobilized onto microtitre wells to test the binding of recombinant factor V constructs. Because results from the new binding assays were in agreement on the regions of the C2 domain important for multimerin binding, the new assay was used to examine the effect of thrombin on factor V-multimerin binding. Thrombin exposure led to significant dissociation of preformed multimerin-factor V complexes (p<0.01). In addition, thrombin cleaved factor Va had significantly reduced multimerin-binding in assays using antibodies against the factor Va heavy chain and light chain (p<0.01). Recently, our lab identified that platelets contain forms of factor V covalently linked to multimerin via cysteine 1085 in the factor V B-domain. After recombinant factor V was activated by thrombin, there was no detectable binding of the liberated B-domain to multimerin (p<0.001). Nonetheless, the B domain of factor V appeared to enhance factor V binding to multimerin, as factor V constructs synthesized without the B-domain had reduced multimerin binding even after conversion to factor Va, compared to wild-type factor V. Based on the overlap between multimerin-binding and procoagulant, PS binding regions in the C2 domain of factor V, we assessed the effect of multimerin on factor V procoagulant activity in one stage and two stage prothrombinase assays. However, multimerin did not neutralize factor V procoagulant activity when tested in molar excess. Our study indicates that multimerin binding of factor V is modulated by conformational changes in factor V upon activation, and that the factor V B-domain may function to enhance binding to multimerin. The dissociation of multimerin-factor V complexes by thrombin suggests multimerin might be important for delivering and localizing factor V onto platelets, prior to prothrombinase assembly.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2016-2016
Author(s):  
Katsumi Nishiya ◽  
Keiji Nogami ◽  
Kiyotaka Okada ◽  
Osamu Matsuo ◽  
Kenichi Ogiwara ◽  
...  

Abstract Plasmin (Plm), an active form of plasminogen (Plg), functions as a key enzyme in the fibrinolytic system. Furthermore, this enzyme directly inactivates various coagulation factors such as factor V (FV) and factor VIII (FVIII) by limited proteolysis, suggesting another role of Plm in the regulation of the coagulation system. We recently reported that Plm/Plg interacts with FVIII and its active form (FVIIIa), both dependently and independently of lysine-binding site (LBS) (Blood2007; 110, 522a). In this study, we attempted to localize a factor Va (FVa)-interactive region on Plm (and Plg) using Plm/Plg kringle fragments. Surface plasmon resonance-based assays showed that FVa directly bound to active-site modified Plm (anhydro-Plm) with an ~2-fold higher affinity, compared to Plg (Kd; 97 and 198 nM, respectively). In particular, FVa bound to the immobilized-Plg fragment consisting of kringle 1-2-3 domains (K1-3) (Kd: 706 nM), whilst FVa failed to bind both the kringle 4 domain (K4) and Plg fragment consisting of kringle 5 and catalytic domains (K5-CD). A similar experiment using immobilized FVa also revealed that the K1-3 solely bound to FVa. These results were quite different from those obtained by FVIII and Plm/Plg binding experiment that the K5-CD bound to FVIII(a) more preferably. Competitive binding assay using 6-aminohexanoic acid (6-AHA), a competitor of LBS of Plm/Plg, showed that 6-AHA markedly inhibited (by >90%) the K1-3 binding to FVa (IC50; ~25 μM), suggesting that interaction of FVa with Plm is mostly dependent upon LBS. According to the one stage-clotting assay, 6-AHA inhibited (>90%) Plm-catalyzed inactivation of FVa in a dose-dependent manner (IC50; ~10 μM). Furthermore, Plm-catalyzed inactivation of FVa was blocked by an anti-K1-3 monoclonal antibody (mAb), not by either anti-K4 or anti-K5-CD mAb, although Plm-catalyzed inactivation of FVIII was blocked by anti-K5-CD mAb. In order to confirm that the inhibitory effect of 6-AHA on the Plm-catalyzed inactivation, we performed SDS-PAGE experiment. Plm cleaves FVa at Lys309 and Arg348 in the heavy chain, and at Arg1752 in the light chain. SDS-PAGE analysis revealed that 6-AHA blocked Plm-catalyzed cleavages of the light chain more prominently than that of the heavy chain (IC50; ~10 and ~>100 μM, respectively). These findings suggest that the K1-3 of Plm (and Plg) interacts with the FVa through the LBS-dependent mechanisms, and these interactions likely contribute to the FVa-catalyzed inactivation by proteolytic cleavages at Arg1752 in the light chain. Present study indicated that plasmin-catalyzed protelytic inactivation of coagulation factor is complicatedly regulated by the LBS dependency in the protein and protein interaction.


1995 ◽  
Vol 73 (1-2) ◽  
pp. 105-112 ◽  
Author(s):  
Emilia Furmaniak-Kazmierczak ◽  
Michael E. Nesheim ◽  
Graham P. Côté

Bovine coagulation cofactor factor Va is shown to bind to filaments of skeletal muscle actin with a dissociation constant of 40–50 nM in the presence of 50 mM NaCl. At saturation, approximately one molecule of factor Va was bound for every two actin molecules. The binding of factor Va to F-actin was inhibited by increasing ionic strength, being approximately 20-fold weaker at 150 mM NaCl. Addition of factor Va dramatically increased both the low-speed sedimentation and the low-shear viscosity of actin filament solutions, indicating that factor Va cross-links actin filaments. Factor Va also bound to actin filaments saturated with myosin. The isolated 74-kilodalton light chain of factor Va displayed actin binding and cross-linking properties indistinguishable from those of intact factor Va. The procofactor factor V bound weakly to F-actin, indicating that proteolytic activation is required to uncover the actin binding sites within the light chain domain. Actin filaments had only a slight inhibitory effect on the prothombinase activity of the factor Va – factor Xa – phospholipid complex. Since high concentrations of actin filaments can be exposed to the circulation when cells are damaged, the interaction of factor Va with actin may be of physiological relevance.Key words: blood coagulation, factor V, actin.


1984 ◽  
Vol 73 (4) ◽  
pp. 968-972 ◽  
Author(s):  
H H Salem ◽  
N L Esmon ◽  
C T Esmon ◽  
P W Majerus

Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2180-2190 ◽  
Author(s):  
MD Rand ◽  
M Kalafatis ◽  
KG Mann

Abstract Platelet-derived coagulation factor Va is the primary secreted substrate for a thrombin-stimulation-dependent platelet kinase. Human platelet factor Va, consisting of a molecular weight (M(r)) 105,000 heavy chain and an M(r) 74,000 light chain, incorporates phosphate in at least two sites on the light chain. Phosphorylated factor Va represents 50% of the secreted protein-associated phosphate. This modification occurs exclusively at serine residues and is inhibited by H-7 and staurosporine, which suggests a protein kinase C (PKC)-mediated event. Purified plasma factor V and Va are phosphorylated in the light chain region by rat brain PKC. The activity of platelet factor Va in prothrombinase on platelets is not altered when phosphorylation is inhibited by staurosporine. Plasma-derived factor Va in the presence of thrombin stimulated platelets is phosphorylated on both the heavy chain and the light chain. Plasma factor V and factor Va heavy chain phosphorylation occurs without light chain phosphorylation in the presence of added 32P gamma-ATP and non-stimulated or collagen- stimulated platelets or casein kinase II. This differential phosphorylation of factor Va heavy and light chain shows two independent platelet kinase activities that act on factor Va. The heavy chain factor V/Va kinase activity is similar to casein kinase II, which we have demonstrated previously to act on factor Va and accelerate activated protein C inactivation of the cofactor. Our data show platelet-dependent phosphorylation of platelet and plasma factor V and Va resulting in significant covalent modifications of the cofactor. These modifications may play a role in directing the extracellular distribution of factor V and factor Va.


1987 ◽  
Author(s):  
F Tokunaga ◽  
T Miyata ◽  
T Nakamura ◽  
T Morita ◽  
S Iwanaga

Limulus clotting factor, factor C, is a lipopolysaccharide (LPS)-sensitive serine-protease zymogen present in the hemocytes. It is a two-chain glycoprotein (M.W. = 123,000) composed of a heavy chain (M.W. = 80,000) and a light chain (M.W. = 43,000) T. Nakamura et al. (1986) Eur. J. Biochem. 154, 511-521 .On further studies of this zymogen, a single-chain factor C (M.W. = 123,000) was identified by Western blotting technique. The heavy chain had an NH2-terminal sequence of Ser-Gly-Val-Asp-, which was consistent with the NH2-terminal sequence of the single-chain factor C, indicating that the heavy chain is located in the NH2-terminal part of the zymogen. The light chain had an NH22-terminal sequence of Ser-Ser-Gln-Pro-. Incubation of the two-chain zymogen with LPS resulted in the cleavage of a Phe-Ile bond between residues 72 and 73 of the light chain. Concomitant with this cleavage, the A (72.amino acids) and B chains derived from the light chain was formed. The complete amino acid sequence of the A chain was determined by automated Edman degradation. The A chain contained a typical segment which is similar structuraly to those a family of repeats in human β2 -glycoprotein I, complement factors B, Clr, Cls, H, C4b-binding protein, 02, coagulation factor XIII b subunit, haptoglobin a chain, and interleukin 2 receptor. The NH2-terminal sequence of the B chain was Ile-Trp-Asn-Gly-. This chain contained the serine-active site sequence of -ASP-Ala-Cys-Ser-Gly-Asp-SER-Gly-Gly-Pro-.These results indicate that limulus factor C exists in the hemocytes in a single-chain zymogen form and is converted to an active serine-protease by hydrolysis of a specific Phe-Ile peptide bond. The correlation of limulus factor C and mammalian complement proteins was also suggested.


Sign in / Sign up

Export Citation Format

Share Document