competitive binding assay
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 36)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Jinfeng Xiong ◽  
Hui Zhang ◽  
Caixia Li ◽  
Rui Ma ◽  
Hui Ai ◽  
...  

Abstract Aedes aegypti can transmit dengue fever, yellow fever, Chikungunya fever, Zika virus disease and vector density control is the most effective way to prevent these infectious diseases. However, the extensive use of chemical pesticides has caused a series of problems, such as environmental pollution, killing non-target organisms and so on. In this study, a parasitic nematode, Romanomermis wuchangensis was used in the larviciding evaluation of Ae. aegypti, while the activity of four chemical insecticides and biological control agents were tested. Besides, Mentha haplocalyx essential oil was isolated and its olfactory physiological function with OBP1 protein of Ae. aegypti antenna was measured by the prokaryotic expression and fluorescence competitive binding assay. Compared with the control group, R. wuchangensis indicated high efficiency and environmental friendliness in the control of Ae. aegypti. After the second instar larvae were parasitized, the mortality of two treatment groups exceeded 75%. Compared to control group, the quantitative real-time PCR analysis results demonstrated that SOD, POD and CAT genes had obvious high expression levels in the nematodes parasitic groups. The antioxidant enzyme test results also exhibited obvious difference of SOD, CAT and POD during the nematode parasitic period. Besides, Bacillus thuringiensis (Bti) and chemical insecticide experimental results also showed great insecticidal efficacy against mosquito larvae. Five chemical components including Menthol, Pinene, Limonene, Isopulegol and Pulegone were identified from M. haplocalyx and exhibited great binding ability with AaegOBP1 protein. Present results illustrated that the integrated application of these various mosquito vector control methods in the future has broad prospects.


2021 ◽  
Vol 22 (19) ◽  
pp. 10552
Author(s):  
Gergely Becskereki ◽  
George Horvai ◽  
Blanka Tóth

Molecularly imprinted polymers have been shown to be useful in competitive biomimetic binding assays. Recent developments in materials science have further enhanced the capabilities of imprinted polymers. Binding assays, biological and biomimetic alike, owe their usefulness to their selectivity. The selectivity of competitive binding assays has been characterized with the cross-reactivity, which is usually expressed as the ratio of the measured IC50 concentration values of the interferent and the analyte, respectively. Yet this cross-reactivity is only a rough estimate of analytical selectivity. The relationship between cross-reactivity and analytical selectivity has apparently not been thoroughly investigated. The present work shows that this relationship depends on the underlying model of the competitive binding assay. For the simple but widely adopted model, where analyte and interferent compete for a single kind of binding site, we provide a simple formula for analytical selectivity. For reasons of an apparent mathematical problem, this formula had not been found before. We also show the relationship between analytical selectivity and cross-reactivity. Selectivity is also shown to depend on the directly measured quantity, e.g., the bound fraction of the tracer. For those cases where the one-site competitive model is not valid, a practical procedure is adopted to estimate the analytical selectivity. This procedure is then used to analyze the example of the competitive two-site binding model, which has been the main model for describing molecularly imprinted polymer behavior. The results of this work provide a solid foundation for assay development.


2021 ◽  
Vol 22 (16) ◽  
pp. 8757
Author(s):  
Salima Lalani ◽  
Malihe Masomian ◽  
Chit Laa Poh

Enterovirus A71 (EV-A71) is a major neurovirulent agent capable of causing severe hand, foot and mouth disease (HFMD) associated with neurological complications and death. Currently, no FDA-approved antiviral is available for the treatment of EV-A71 infections. The flavonoid silymarin was shown to exert virucidal effects, but the binding site on the capsid was unknown. In this study, the ligand interacting site of silymarin was determined in silico and validated in vitro. Moreover, the potential of EV-A71 to develop resistance against silymarin was further evaluated. Molecular docking of silymarin with the capsid of EV-A71 indicated that silymarin binds to viral protein 1 (VP1) of EV-A71, specifically at the GH loop of VP1. The in vitro binding of silymarin with VP1 of EV-A71 was validated using recombinant VP1 through ELISA competitive binding assay. Continuous passaging of EV-A71 in the presence of silymarin resulted in the emergence of a mutant carrying a substitution of isoleucine by threonine (I97T) at position 97 of the BC loop of EV-A71. The mutation was speculated to overcome the inhibitory effects of silymarin. This study provides functional insights into the underlying mechanism of EV-A71 inhibition by silymarin, but warrants further in vivo evaluation before being developed as a potential therapeutic agent.


Author(s):  
Federica Brunoni ◽  
Enrico Rolli ◽  
Eugenia Polverini ◽  
Lukáš Spíchal ◽  
Ada Ricci

AbstractThe aim of this study was to investigate the action spectrum of two urea derivatives, the 1,3-di(benzo[d]oxazol-5-yl)urea (5-BDPU) and the 1,3-di(benzo[d]oxazol-6-yl)urea (6-BDPU). In order to evaluate a possible adjuvant activity on cytokinins the compounds alone or in the simultaneous presence of different cytokinins were assayed either on in vitro typical cytokinin-related bioassays, or on in planta interaction with cytokinin signal transduction pathway. The compounds ability to activate the cytokinin receptor CRE1/AHK4 was studied either by a heterologous bacterial assay or by a competitive binding assay and docking simulations were performed with the crystal structure of the same receptor. Then, owing to their chemical structure which resembles that of urea-type cytokinins, the ability of 5- and 6-BDPU to inhibit the activity of cytokinin oxidase/dehydrogenase of Zea mays (ZmCKX1) was investigated and docking simulations were performed as well. Accordingly to the experimental results, we speculate that BDPUs could show a dual activity: the blocking of the conformational re-adaption of CRE1/AHK4 receptor maintaining the cytokinin inside its binding pocket, thus possibly enhancing its kinase action; the inhibition of cytokinin oxidase/dehydrogenase activity thus possibly preventing its cleavage of natural cytokinins with isoprenoid side chain. Graphic abstract


2021 ◽  
Vol 12 ◽  
Author(s):  
Bojun Xiong ◽  
Guilin Jin ◽  
Ying Xu ◽  
Wenbing You ◽  
Yufei Luo ◽  
...  

Koumine is an alkaloid that displays notable activity against inflammatory and neuropathic pain, but its therapeutic target and molecular mechanism still need further study. Translocator protein 18 kDa (TSPO) is a vital therapeutic target for pain treatment, and recent research implies that there may be allostery in TSPO. Our previous competitive binding assay hint that koumine may function as a TSPO positive allosteric modulator (PAM). Here, for the first time, we report the pharmacological characterization of koumine as a TSPO PAM. The results imply that koumine might be a high-affinity ligand of TSPO and that it likely acts as a PAM since it could delay the dissociation of 3H-PK11195 from TSPO. Importantly, the allostery was retained in vivo, as koumine augmented Ro5-4864-mediated analgesic and anti-inflammatory effects in several acute and chronic inflammatory and neuropathic pain models. Moreover, the positive allosteric modulatory effect of koumine on TSPO was further demonstrated in cell proliferation assays in T98G human glioblastoma cells. In summary, we have identified and characterized koumine as a TSPO PAM for the treatment of inflammatory and neuropathic pain. Our data lay a solid foundation for the use of the clinical candidate koumine to treat inflammatory and neuropathic pain, further demonstrate the allostery in TSPO, and provide the first proof of principle that TSPO PAM may be a novel avenue for the discovery of analgesics.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yang Zhang ◽  
Gerd Bobe ◽  
Cristobal L Miranda ◽  
Malcolm B Lowry ◽  
Victor L Hsu ◽  
...  

We previously reported xanthohumol (XN), and its synthetic derivative tetrahydro-XN (TXN), attenuates high-fat diet (HFD)-induced obesity and metabolic syndrome in C57Bl/6J mice. The objective of the current study was to determine the effect of XN and TXN on lipid accumulation in the liver. Non-supplemented mice were unable to adapt their caloric intake to 60% HFD, resulting in obesity and hepatic steatosis; however, TXN reduced weight gain and decreased hepatic steatosis. Liver transcriptomics indicated that TXN might antagonize lipogenic PPARγ actions in vivo. XN and TXN inhibited rosiglitazone-induced 3T3-L1 cell differentiation concomitant with decreased expression of lipogenesis-related genes. A peroxisome proliferator activated receptor gamma (PPARγ) competitive binding assay showed that XN and TXN bind to PPARγ with an IC50 similar to pioglitazone and 8–10 times stronger than oleate. Molecular docking simulations demonstrated that XN and TXN bind in the PPARγ ligand-binding domain pocket. Our findings are consistent with XN and TXN acting as antagonists of PPARγ.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 991
Author(s):  
Xunyan Ye ◽  
Obinna P. Iwuchukwu ◽  
Vasanthi Avadhanula ◽  
Letisha O. Aideyan ◽  
Trevor J. McBride ◽  
...  

Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection in infants, the elderly, and immunocompromised patients. RSV antibodies play a role in preventing reinfection and in clearance of RSV, but data regarding the levels of viral protein-specific antibodies elicited and their contribution to patient recovery from RSV-induced disease are limited. We prospectively enrolled a cohort of RSV-infected adult hematopoietic cell transplant (HCT) recipients (n = 40). Serum and nasal-wash samples were obtained at enrollment (acute samples) and convalescence (convalescent samples). We measured (1) humoral IgG and mucosal IgA binding antibody levels to multiple RSV proteins (F, G, N, P, and M2-1) by Western blot (WB); (2) neutralizing antibody (Nt Ab) titers by microneutralization assay; and (3) palivizumab-like antibody (PLA) concentrations by an ELISA-based competitive binding assay developed in the lab. Finally, we tested for correlations between protein-specific antibody levels and duration of viral shedding (normal: cleared in <14 days and delayed: cleared ≥14 days), as well as RSV/A and RSV/B subtypes. Convalescent sera from HCT recipients had significantly higher levels of anti-RSV antibodies to all 5 RSV structural proteins assayed (G, F, N, P, M2-1), higher Nt Abs to both RSV subtypes, and higher serum PLAs than at enrollment. Significantly higher levels of mucosal antibodies to 3 RSV structural proteins (G, N, and M2-1) were observed in the convalescent nasal wash versus acute nasal wash. Normal viral clearance group had significantly higher levels of serum IgG antibodies to F, N, and P viral proteins, higher Nt Ab to both RSV subtypes, and higher PLA, as well as higher levels of mucosal IgA antibodies to G and M2-1 viral proteins, and higher Nt Ab to both RSV subtypes compared to delayed viral clearance group. Normal RSV clearance was associated with higher IgG serum antibody levels to F and P viral proteins, and PLAs in convalescent serum (p < 0.05). Finally, overall antibody levels in RSV/A- and/B-infected HCT recipients were not significantly different. In summary, specific humoral and mucosal RSV antibodies are associated with viral clearance in HCT recipients naturally infected with RSV. In contrast to the humoral response, the F surface glycoprotein was not a major target of mucosal immunity. Our findings have implications for antigen selection in the development of RSV vaccines.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 565
Author(s):  
Dong Zhou ◽  
Huaping Chen ◽  
Cedric Mpoy ◽  
Sadia Afrin ◽  
Buck E. Rogers ◽  
...  

Poly (ADP-ribose) polymerase-1 (PARP-1) is a critical enzyme in the DNA repair process and the target of several FDA-approved inhibitors. Several of these inhibitors have been radiolabeled for non-invasive imaging of PARP-1 expression or targeted radiotherapy of PARP-1 expressing tumors. In particular, derivatives of olaparib and rucaparib, which have reduced trapping potency by PARP-1 compared to talazoparib, have been radiolabeled for these purposes. Here, we report the first radiosynthesis of [18F]talazoparib and its in vitro and in vivo evaluation. Talazoparib (3a”) and its bromo- or iodo-derivatives were synthesized as racemic mixtures (3a, 3b and 3c), and these compounds exhibit high affinity to PARP-1 (Ki for talazoparib (3a”): 0.65 ± 0.07 nM; 3a: 2.37 ± 0.56 nM; 3b: 1.92 ± 0.41 nM; 3c: 1.73 ± 0.43 nM; known PARP-1 inhibitor Olaparib: 1.87 ± 0.10 nM; non-PARP-1 compound Raclopride: >20,000 nM) in a competitive binding assay using a tritium-labeled PARP-1 radioligand [3H]WC-DZ for screening. [18F]Talazoparib (3a”) was radiosynthesized via a multiple-step procedure with good radiochemical and chiral purities (98%) and high molar activity (28 GBq/μmol). The preliminary biodistribution studies in the murine PC-3 tumor model showed that [18F]talazoparib had a good level of tumor uptake that persisted for over 8 h (3.78 ± 0.55 %ID/gram at 4 h and 4.52 ± 0.32 %ID/gram at 8 h). These studies show the potential for the bromo- and iodo- derivatives for PARP-1 targeted radiotherapy studies using therapeutic radionuclides.


Sign in / Sign up

Export Citation Format

Share Document