Iron/titanium oxide-biochar (Fe2TiO5/BC): a versatile adsorbent/photocatalyst for aqueous Cr(VI), Pb2+, F- and methylene blue

Author(s):  
Amali Herath ◽  
Chanaka Navarathna ◽  
Shannon Warren ◽  
Felio Perez ◽  
Charles U. Pittman ◽  
...  
2011 ◽  
Vol 71-78 ◽  
pp. 972-975 ◽  
Author(s):  
Hui Dong Su ◽  
Hong Lei Du

Titanium oxide coatings(TiO2/Ti) were formed on the titanium surface by micro-arc oxidation(MAO) in Na3PO4solution.And using the TiO2/Ti as anod electrode, the titanium as counter electrode in the system of three-dimensional electrode.Coated γ- Al2O3(TiO2/γ-Al2O3) that prepared by sol-gel dipcoating method ,and scrap iron mixture as particle electrode, combining with the UV lamp and regulated power supply make up the three-dimensional electrode photoelectrocatalysis system. The photoelectrocatalysis system use 0.02M Na2SO4aqueous solution as supporting electrolyte.The photoelectrocatalytic ability of titanium oxide coatings were evaluated by photoelectrocatalytic degradation of methylene blue aqueous solution.The experiment demonstrate that compare to photoelectrocatalytic degradation of single TiO2/Ti film and only adsorbtion, the photoelectrocatalysis of three-dimensional electrode with coated particle electrode have the synergistic effect with them, which can improve the degradation of methylene blue aqueous solution. When the methylthionine chloride concentration of 5mg/L, cell voltage of 7V. The three-dimensional electrode photoelectrocatalysis degradation of methylene blue compare to traditional two-dimensional plate electrodes which without particle electrode increase 43.35% after 3 hours photoelectrocatalysis.


2003 ◽  
Vol 44 (10) ◽  
pp. 2124-2129 ◽  
Author(s):  
Shinya Otsuka-Yao-Matsuo ◽  
Takahisa Omata ◽  
Shin Ueno ◽  
Masao Kita

2009 ◽  
Vol 10 (11) ◽  
pp. 4707-4718 ◽  
Author(s):  
Thou-Jen Whang ◽  
Hsien-Yu Huang ◽  
Mu-Tao Hsieh ◽  
Jyun-Jen Chen

2010 ◽  
Vol 156-157 ◽  
pp. 344-349 ◽  
Author(s):  
Hui Dong Su ◽  
Hong Lei Du

Titanium oxide coatings(TiO2/Ti) were formed on the titanium surface by micro-arc oxidation(MAO) in Na3PO4 solution.Using the TiO2/Ti as anod electrode, the titanium as counter electrode.Coated activated carbon(TiO2/AC) that prepared by sol-gel dipcoating method ,and activated carbon mixture as particle electrode,combining with the UV lamp and regulated power supply make up the three-dimensional electrode photoelectrocatalysis system. The photoelectrocatalysis system use Na2SO4 aqueous solution as supporting electrolyte.The photoelectrocatalytic ability of titanium oxide coatings were evaluated by photoelectrocatalytic degradation of methylthionine chloride aqueous solution.The experiment demonstrate that there was photoelectrocatalytic degradation of single TiO2/Ti film or only adsorbtion, the photoelectrocatalysis of three-dimensional electrode with particle electrode have the synergistic effect,which can improve the degradation of methylene blue aqueous solution.The influence of some factors was studied,including initial solution,cell voltage, electrolyte concentration and some other factors.When the methylthionine chloride concentration of 5mg/L, cell voltage of 8V, electrolyte concentration of 0.04M. The three-dimensional electrode photoelectrocatalysis degradation of methylene blue compare to traditional two-dimensional plate electrodes which without particle electrode increase 40.36% after 3 hours photoelectrocatalysis.


Author(s):  
B. J. Panessa ◽  
J. F. Gennaro

Tissue from the hood and sarcophagus regions were fixed in 6% glutaraldehyde in 1 M.cacodylate buffer and washed in buffer. Tissue for SEM was partially dried, attached to aluminium targets with silver conducting paint, carbon-gold coated(100-500Å), and examined in a Kent Cambridge Stereoscan S4. Tissue for the light microscope was post fixed in 1% aqueous OsO4, dehydrated in acetone (4°C), embedded in Epon 812 and sectioned at ½u on a Sorvall MT 2 ultramicrotome. Cross and longitudinal sections were cut and stained with PAS, 0.5% toluidine blue and 1% azure II-methylene blue. Measurements were made from both SEM and Light micrographs.The tissue had two structurally distinct surfaces, an outer surface with small (225-500 µ) pubescent hairs (12/mm2), numerous stoma (77/mm2), and nectar glands(8/mm2); and an inner surface with large (784-1000 µ)stiff hairs(4/mm2), fewer stoma (46/mm2) and larger, more complex glands(16/mm2), presumably of a digestive nature.


Sign in / Sign up

Export Citation Format

Share Document