Multi-objective optimization of the operating conditions in a cutting process based on low carbon emission costs

2016 ◽  
Vol 124 ◽  
pp. 266-275 ◽  
Author(s):  
Zhi-jie Liu ◽  
De-ping Sun ◽  
Cheng-xin Lin ◽  
Xiao-qian Zhao ◽  
Yun Yang
2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


2020 ◽  
pp. 105-113
Author(s):  
M. Farsi

The main aim of this research is to present an optimization procedure based on the integration of operability framework and multi-objective optimization concepts to find the single optimal solution of processes. In this regard, the Desired Pareto Index is defined as the ratio of desired Pareto front to the Pareto optimal front as a quantitative criterion to analyze the performance of chemical processes. The Desired Pareto Front is defined as a part of the Pareto front that all outputs are improved compared to the conventional operating condition. To prove the efficiency of proposed optimization method, the operating conditions of ethane cracking process is optimized as a base case. The ethylene and methane production rates are selected as the objectives in the formulated multi-objective optimization problem. Based on the simulation results, applying the obtained operating conditions by the proposed optimization procedure on the ethane cracking process improve ethylene production by about 3% compared to the conventional condition.  


Author(s):  
Amit K. Thakur ◽  
Santosh K. Gupta ◽  
Rahul Kumar ◽  
Nilanjana Banerjee ◽  
Pranava Chaudhari

Abstract Slurry polymerization processes using Zeigler–Natta catalysts are most widely used for the production of polyethylene due to their several advantages over other processes. Optimal operating conditions are required to obtain the maximum productivity of the polymer at minimal cost while ensuring operational safety in the slurry phase ethylene polymerization reactors. The main focus of this multi-objective optimization study is to obtain the optimal operating conditions corresponding to the maximization of productivity and yield at a minimal operating cost. The tuned reactor model has been optimized. The single objective optimization (SOO) and multi-objective optimization (MOO) problems are solved using non-dominating sorting genetic algorithm-II (NSGA-II). A complete range of Pareto optimal solutions are obtained to obtain the maximum productivity and polymer yield at different input costs.


2021 ◽  
Author(s):  
Homeyra Akter ◽  
Harun Or Rashid Howlader ◽  
Ahmed Y. Saber ◽  
Ashraf M. Hemeida ◽  
Hiroshi Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document