Multi-objective optimization of an industrial slurry phase ethylene polymerization reactor

Author(s):  
Amit K. Thakur ◽  
Santosh K. Gupta ◽  
Rahul Kumar ◽  
Nilanjana Banerjee ◽  
Pranava Chaudhari

Abstract Slurry polymerization processes using Zeigler–Natta catalysts are most widely used for the production of polyethylene due to their several advantages over other processes. Optimal operating conditions are required to obtain the maximum productivity of the polymer at minimal cost while ensuring operational safety in the slurry phase ethylene polymerization reactors. The main focus of this multi-objective optimization study is to obtain the optimal operating conditions corresponding to the maximization of productivity and yield at a minimal operating cost. The tuned reactor model has been optimized. The single objective optimization (SOO) and multi-objective optimization (MOO) problems are solved using non-dominating sorting genetic algorithm-II (NSGA-II). A complete range of Pareto optimal solutions are obtained to obtain the maximum productivity and polymer yield at different input costs.

2013 ◽  
Vol 554-557 ◽  
pp. 2165-2174 ◽  
Author(s):  
Cem C. Tutum ◽  
Ismet Baran ◽  
Jesper Hattel

Pultrusion is one of the most effective manufacturing processes for producing composites with constant cross-sectional profiles. This obviously makes it more attractive for both researchers and practitioners to investigate the optimum process parameters, i.e. pulling speed, power and dimensions of the heating platens, length and width of the heating die, design of the resin injection chamber, etc., to provide better understanding of the process, consequently to improve the efficiency of the process as well the product quality. Numerous simulation approaches have been presented until now. However, optimization studies had been limited with either experimental cases or determining only one objective to improve one aspect of the performance of the process. This objective is either augmented by other process related criteria or subjected to constraints which might have had the same importance of being treated as objectives. In essence, these approaches convert a true multi-objective optimization problem (MOP) into a single-objective optimization problem (SOP). This transformation obviously results in only one optimum solution and it does not support the efforts to get more out of an optimization study, such as relations between variables and objectives or constraints. In this study, an MOP considering thermo-chemical aspects of the pultrusion process (e.g. cure degree, temperatures), in which the pulling speed is maximized and the heating power is minimized simultaneously (without defining any preference between them), has been formulated. An evolutionary multi-objective optimization (EMO) algorithm, non-dominated sorting genetic algorithm (NSGA-II [Deb et al., 2002]), has been used to solve this MOP in an ideal way where the outcome is the set of multiple solutions (i.e. Pareto-optimal solutions) and each solution is theoretically an optimal solution corresponding to a particular trade-off among objectives. Following the solution process, in other words obtaining the Pareto-optimal front, a further postprocessing study has been performed to unveil some common principles existing between the variables, the objectives and the constraints either along the whole front or in some portion of it. These relationships will reveal a design philosophy not only for the improvement of the process efficiency, but also a methodology to design a pultrusion die for different operating conditions.


2021 ◽  
Vol 24 (2) ◽  
Author(s):  
César Oviedo ◽  
Benjamín Barán ◽  
Michel Galeano

The multi-objective optimization of a direct current rotary dryer that operates with pozzolan in a Paraguayan company is detailed in this article. Three objective functions in steady state are minimized using a NSGA-II algorithm, these are: (1) moisture at the exit of the rotary dryer, (2) heat released to the environment through the dryer and (3) operating costs of the production process in the Paraguayan company. Furthermore, the optimum operating conditions of the drying process are obtained and compared with the real process. Experimental results prove the ability of the proposed algorithm to decrease the moisture content of pozzolana by 28%, the heat released to the environment by 38 % and the operating costs by 52%.


Author(s):  
Surender Reddy Salkuti ◽  
Vuddanti Sandeep ◽  
B. Chitti Babu ◽  
Chan-Mook Jung

Abstract This paper presents an optimum day-ahead scheduling of thermal and renewable (wind and solar photovoltaic) power generation as a multi-objective optimization (MOO) problem considering the uncertainty. System operating cost (i.e. cost of thermal, wind, solar PV and battery), reliability and emission cost are considered to be optimized simultaneously. The uncertainties due to the generator outages, wind, solar PV power and load forecast errors are incorporated in the proposed optimization problem using the Loss Of Load Probability (LOLP) and Expected Unserved Energy (EUE) reliability indices. In the proposed approach, the amount of spinning reserves (SRs) required are scheduled based on the desired level of system reliability. The proposed multi-objective optimization problem is solved using NSGA-II algorithm. Different case studies are performed considering different objective functions that may be selected by system operator (SO) based on the preference.


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 107
Author(s):  
Rongchao Jiang ◽  
Zhenchao Jin ◽  
Dawei Liu ◽  
Dengfeng Wang

In order to reduce the negative effect of lightweighting of suspension components on vehicle dynamic performance, the control arm and torsion beam widely used in front and rear suspensions were taken as research objects for studying the lightweight design method of suspension components. Mesh morphing technology was employed to define design variables. Meanwhile, the rigid–flexible coupling vehicle model with flexible control arm and torsion beam was built for vehicle dynamic simulations. The total weight of control arm and torsion beam was taken as optimization objective, as well as ride comfort and handling stability performance indexes. In addition, the fatigue life, stiffness, and modal frequency of control arm and torsion beam were taken as the constraints. Then, Kriging model and NSGA-II were adopted to perform the multi-objective optimization of control arm and torsion beam for determining the lightweight scheme. By comparing the optimized and original design, it indicates that the weight of the optimized control arm and torsion beam are reduced 0.505 kg and 1.189 kg, respectively, while structural performance and vehicle performance satisfy the design requirement. The proposed multi-objective optimization method achieves a remarkable mass reduction, and proves to be feasible and effective for lightweight design of suspension components.


2021 ◽  
Author(s):  
Varun Ojha ◽  
Giorgio Jansen ◽  
Andrea Patanè ◽  
Antonino La Magna ◽  
Vittorio Romano ◽  
...  

AbstractWe propose a two-stage multi-objective optimization framework for full scheme solar cell structure design and characterization, cost minimization and quantum efficiency maximization. We evaluated structures of 15 different cell designs simulated by varying material types and photodiode doping strategies. At first, non-dominated sorting genetic algorithm II (NSGA-II) produced Pareto-optimal-solutions sets for respective cell designs. Then, on investigating quantum efficiencies of all cell designs produced by NSGA-II, we applied a new multi-objective optimization algorithm II (OptIA-II) to discover the Pareto fronts of select (three) best cell designs. Our designed OptIA-II algorithm improved the quantum efficiencies of all select cell designs and reduced their fabrication costs. We observed that the cell design comprising an optimally doped zinc-oxide-based transparent conductive oxide (TCO) layer and rough silver back reflector (BR) offered a quantum efficiency ($$Q_e$$ Q e ) of 0.6031. Overall, this paper provides a full characterization of cell structure designs. It derives relationship between quantum efficiency, $$Q_e$$ Q e of a cell with its TCO layer’s doping methods and TCO and BR layer’s material types. Our solar cells design characterization enables us to perform a cost-benefit analysis of solar cells usage in real-world applications.


Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


Sign in / Sign up

Export Citation Format

Share Document