Estimation of fly ash reactivity for use in alkali-activated cements - A step towards sustainable building material and waste utilization

2018 ◽  
Vol 178 ◽  
pp. 22-33 ◽  
Author(s):  
J. Shekhovtsova ◽  
I. Zhernovsky ◽  
M. Kovtun ◽  
N. Kozhukhova ◽  
I. Zhernovskaya ◽  
...  
2021 ◽  

Concrete is the most versatile, durable and reliable material and is the most used building material. It requires large amounts of Portland cement which has environmental problems associated with its production. Hence, an alternative concrete – geopolymer concrete is needed. The general aim of this book is to make significant contributions in understanding and deciphering the mechanisms of the realization of the alkali-activated fly ash-based geopolymer concrete and, at the same time, to present the main characteristics of the materials, components, as well as the influence that they have on the performance of the mechanical properties of the concrete. The book deals with in-depth research of the potential recovery of fly ash and using it as a raw material for the development of new construction materials, offering sustainable solutions to the construction industry.


Compressed Stabilized Earth Brick (CSEB) is a one of the sustainable building material utilizing locally available soils mixed with stabilizers in order to increase its strength. This type of brick mainly consists of soil, sand and a stabilizing agents such as lime, fly ash, chemicals etc. Fly ash brick (FAB) is also a building material containing class C or class F fly ash ,fine aggregate, lime and gypsum .Both the bricks are unburnt bricks which is used to reduce the fuel consumption. In this study, the laterite soil is used and it is stabilized by chemical stabilization which is extensively employed to enhance the physical and mechanical properties of problematic soil. This study examines the effect of xanthan gum which is one of the biopolymer stabilizer in both the compressed laterite soil brick and fly ash brick . Experiments have been conducted by replacing 2%, 4% and 6% of xanthan gum in compressed laterite soil brick and replacing 2%, 4% and 6% of xanthan gum in fly ash brick partially with cement. The results indicate the potential use of xanthan gum. Tests were conducted on both the bricks and it is compared with normal clay fired brick. It has been shown that 4 % of xanthan gum in compressed laterite soil brick gives high strength of about 8.79 N/mm2 and 6 % of xanthan gum in fly ash brick give more strength of about 7.31N/mm2 .The minimum water absorption is achieved in both compressed laterite soil brick and fly ash brick of about 14.2 % and 10.10 % in the mix of C2 and F3. It promotes a healthier building material and cost reducing not only in production but also in service cost


2019 ◽  
Vol 23 (9) ◽  
pp. 3875-3888 ◽  
Author(s):  
Anant Lal Murmu ◽  
Anamika Jain ◽  
Anjan Patel

Sign in / Sign up

Export Citation Format

Share Document