Resolving stability issue of thermophilic high-rate anaerobic palm oil mill effluent treatment via adaptive neuro-fuzzy inference system predictive model

2018 ◽  
Vol 198 ◽  
pp. 797-805 ◽  
Author(s):  
H.M. Tan ◽  
P.E. Poh ◽  
D. Gouwanda
2015 ◽  
Vol 789-790 ◽  
pp. 263-267
Author(s):  
Yan Lei Li ◽  
Ming Yan Wang ◽  
You Min Hu ◽  
Bo Wu

This paper proposes a new method to predict the spindle deformation based on temperature data. The method introduces ANFIS (adaptive neuro-fuzzy inference system). For building the predictive model, we first extract temperature data from sensors in the spindle, and then they are used as the inputs to train ANFIS. To evaluate the performance of the prediction, an experiment is implemented. Three Pt-100 thermal resistances is used to monitor the spindle temperature, and an inductive current sensor is used to obtain the spindle deformation. The experimental results display that our prediction model can better predict the spindle deformation and improve the performance of the spindle.


2017 ◽  
Vol 3 (1) ◽  
pp. 36-48
Author(s):  
Erwan Ahmad Ardiansyah ◽  
Rina Mardiati ◽  
Afaf Fadhil

Prakiraan atau peramalan beban listrik dibutuhkan dalam menentukan jumlah listrik yang dihasilkan. Ini menentukan  agar tidak terjadi beban berlebih yang menyebabkan pemborosan atau kekurangan beban listrik yang mengakibatkan krisis listrik di konsumen. Oleh karena itu di butuhkan prakiraan atau peramalan yang tepat untuk menghasilkan energi listrik. Teknologi softcomputing dapat digunakan  sebagai metode alternatif untuk prediksi beban litrik jangka pendek salah satunya dengan metode  Adaptive Neuro Fuzzy Inference System pada penelitian tugas akhir ini. Data yang di dapat untuk mendukung penelitian ini adalah data dari APD PLN JAWA BARAT yang berisikan laporan data beban puncak bulanan penyulang area gardu induk majalaya dari januari 2011 sampai desember 2014 sebagai data acuan dan data aktual januari-desember 2015. Data kemudian dilatih menggunakan metode ANFIS pada software MATLAB versi b2010. Dari data hasil pelatihan data ANFIS kemudian dilakukan perbandingan dengan data aktual dan data metode regresi meliputi perbandingan anfis-aktual, regresi-aktual dan perbandingan anfis-regresi-aktual. Dari perbandingan disimpulkan bahwa data metode anfis lebih mendekati data aktual dengan rata-rata 1,4%, menunjukan prediksi ANFIS dapat menjadi referensi untuk peramalan beban listrik dimasa depan.


Author(s):  
Angga debby frayudha ◽  
Aris Yulianto ◽  
Fatmawatul Qomariyah

Di era revolusi industry 4.0 terdapat banyak sekali kemudahan yang diberikan teknologi kepada manusia. Tentu ini akan menjadi baik apabila manusia mampu memanfaatkan hal tersebut dengan baik pula. Namun disisi lain juga bisa mengakibatkan dampak negative terhadap manusia, misalnya dengan adanya internet bisa mengakibatkan manusia melakukan penipuan di media social. Selain itu dengan canggihnya teknologi dapat menjadikan manusia menjadi malas yang bisa berimbas menurunnya kualitas sumber daya manusia. Maka dari itu untuk menghadapi hal ini perlu menyiapkan pendidikan yang baik.Pendidikan akan berjalan baik apabila lembaga yang mengurusnya berkompeten dalam melakukan tugasnya .Penulis coba memberikan ide untuk memprediksi kinerja pegawai Dinas Pendidikan Kabupaten Rembang menggunakan mentode ANFIS (Adaptive Neuro Fuzzy Inference System) guna untuk membantu lembaga tersebut menyeleksi maupun menilai kinerja karyawan demi meningkatkan kualitas dari segi sumber daya manusia. ANFIS merupakan jaringan adaptif yang berbasis pada sistem kesimpulan fuzzy (fuzzy inference system). Model penilaian kinerja pegawai di Dinas Pendidikan Kabupaten Rembang dengan menggunakan Adaptive Neuro-Fuzzy Inference System (ANFIS) menghasilkan penilaian  yang lebih baik dan akurat.  Hasil pengujian metode tersebut memiliki nilai akurasi 65%. Dengan metode ANFIS (Adaptive Neuro Fuzzy Inference System) dapat memprediksi kinerja karyawan sebagai salah satu pengambilan keputusan terhadap kinerja pegawai. Selain itu nantinya system penlaian kinerja pegawai akan lebih tertata dan efisien.


Sign in / Sign up

Export Citation Format

Share Document