Machine learning powered software for accurate prediction of biogas production: A case study on industrial-scale Chinese production data

2019 ◽  
Vol 218 ◽  
pp. 390-399 ◽  
Author(s):  
Djavan De Clercq ◽  
Devansh Jalota ◽  
Ruoxi Shang ◽  
Kunyi Ni ◽  
Zhuxin Zhang ◽  
...  
Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1257
Author(s):  
Christian Both ◽  
Roussos Dimitrakopoulos

With the increased use of digital technologies in the mining industry, the amount of centrally stored production data is continuously growing. However, datasets in mines and processing plants are not fully utilized to build links between extracted materials and metallurgical plant performances. This article shows a case study at the Tropicana Gold mining complex that utilizes penetration rates from blasthole drilling and measurements of the comminution circuit to construct a data-driven, geometallurgical throughput prediction model of the ball mill. Several improvements over a previous publication are shown. First, the recorded power draw, feed particle and product particle size are newly considered. Second, a machine learning model in the form of a neural network is used and compared to a linear model. The article also shows that hardness proportions perform 6.3% better than averages of penetration rates for throughput prediction, underlining the importance of compositional approaches for non-additive geometallurgical variables. When adding ball mill power and product particle size, the prediction error (RMSE) decreases by another 10.6%. This result can only be achieved with the neural network, whereas the linear regression shows improvements of 4.2%. Finally, it is discussed how the throughput prediction model can be integrated into production scheduling.


Author(s):  
Kjell Jorner ◽  
Tore Brinck ◽  
Per-Ola Norrby ◽  
David Buttar

Hybrid reactivity models, combining mechanistic calculations and machine learning with descriptors, are used to predict barriers for nucleophilic aromatic substitution.


i-com ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 19-32
Author(s):  
Daniel Buschek ◽  
Charlotte Anlauff ◽  
Florian Lachner

Abstract This paper reflects on a case study of a user-centred concept development process for a Machine Learning (ML) based design tool, conducted at an industry partner. The resulting concept uses ML to match graphical user interface elements in sketches on paper to their digital counterparts to create consistent wireframes. A user study (N=20) with a working prototype shows that this concept is preferred by designers, compared to the previous manual procedure. Reflecting on our process and findings we discuss lessons learned for developing ML tools that respect practitioners’ needs and practices.


2021 ◽  
Vol 200 ◽  
pp. 108377
Author(s):  
Bing Kong ◽  
Zhuoheng Chen ◽  
Shengnan Chen ◽  
Tianjie Qin

Sign in / Sign up

Export Citation Format

Share Document