Static and dynamic solar photovoltaic models’ parameters estimation using hybrid Rao optimization algorithm

2021 ◽  
pp. 128080
Author(s):  
Shuhui Wang ◽  
Yongguang Yu ◽  
Wei Hu
2019 ◽  
Vol 7 (3) ◽  
pp. 117
Author(s):  
Abeer Shaban Omar ◽  
Hany M. Hasanien ◽  
Ahmed Al-Durra ◽  
Walid H. Abd El-Hameed

2018 ◽  
Vol 7 (3.3) ◽  
pp. 168
Author(s):  
Gera Kalidas Babu ◽  
P V. Ramana rao

The present paper foremost objective is to resolve best practicable location of solar photovoltaic distribution generation (DG) of several cases using different distribution load power factors and to analyze power loss reduction. This objective achieved by a recent developed method, the so called colliding bodies’ optimization algorithm, to perceive optimum location. Performances of colliding bodies’ optimization algorithm have been evaluated and compared with other search algorithms. The execution to test viability and efficiency, the proposed collid-ing bodies’ optimization is simulated on standard IEEE 38 bus radial distribution networks. The acquired outcome from colliding bodies Optimization algorithm exhibits the possible location of distributed generation through different pre assumed load power factors compared to the other stochastic search bat and genetic algorithm.  


Solar Energy ◽  
2020 ◽  
Vol 207 ◽  
pp. 336-346 ◽  
Author(s):  
Jing Liang ◽  
Kangjia Qiao ◽  
Kunjie Yu ◽  
Shilei Ge ◽  
Boyang Qu ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 963
Author(s):  
Mohammed Adam Kunna ◽  
Tuty Asmawaty Abdul Kadir ◽  
Muhammad Akmal Remli ◽  
Noorlin Mohd Ali ◽  
Kohbalan Moorthy ◽  
...  

Building a biologic model that describes the behavior of a cell in biologic systems is aimed at understanding the physiology of the cell, predicting the production of enzymes and metabolites, and providing a suitable data that is valid for bio-products. In addition, building a kinetic model requires the estimation of the kinetic parameters, but kinetic parameters estimation in kinetic modeling is a difficult task due to the nonlinearity of the model. As a result, kinetic parameters are mostly reported or estimated from different laboratories in different conditions and time consumption. Hence, based on the aforementioned problems, the optimization algorithm methods played an important role in addressing these problems. In this study, an Enhanced Segment Particle Swarm Optimization algorithm (ESe-PSO) was proposed for kinetic parameters estimation. This method was proposed to increase the exploration and the exploitation of the Segment Particle Swarm Optimization algorithm (Se-PSO). The main metabolic model of E. coli was used as a benchmark which contained 172 kinetic parameters distributed in five pathways. Seven kinetic parameters were well estimated based on the distance minimization between the simulation and the experimental results. The results revealed that the proposed method had the ability to deal with kinetic parameters estimation in terms of time consumption and distance minimization.


2018 ◽  
Vol 22 (4) ◽  
pp. 1581-1588 ◽  
Author(s):  
Kai-Wen Wang ◽  
Xiao-Hua Yang ◽  
Yu-Qi Li ◽  
Chang-Ming Liu ◽  
Xing-Jian Guo

To improve the precision of parameters? estimation in Philip infiltration model, chaos gray-coded genetic algorithm was introduced. The optimization algorithm made it possible to change from the discrete form of time perturbation function to a more flexible continuous form. The software RETC and Hydrus-1D were applied to estimate the soil physical parameters and referenced cumulative infiltration for seven different soils in the USDA soil texture triangle. The comparisons among Philip infiltration model with different numerical calculation methods showed that using optimization technique can increase the Nash and Sutcliffe efficiency from 0.82 to 0.97, and decrease the percent bias from 14% to 2%. The results indicated that using the discrete relationship of time perturbation function in Philip infiltration model?s numerical calculation underestimated model?s parameters, but this problem can be corrected a lot by using optimization algorithm. We acknowledge that in this study the fitting of time perturbation function, Chebyshev polynomial with order 20, did not perform perfectly near saturated and residue water content. So exploring a more appropriate function for representing time perturbation function is valuable in the future.


Sign in / Sign up

Export Citation Format

Share Document